Taming Android Fragmentation through Lightweight Crowdsourced Testing
- URL: http://arxiv.org/abs/2304.04347v2
- Date: Sat, 17 Jun 2023 04:10:00 GMT
- Title: Taming Android Fragmentation through Lightweight Crowdsourced Testing
- Authors: Xiaoyu Sun, Xiao Chen, Yonghui Liu, John Grundy and Li Li
- Abstract summary: We propose a novel, lightweight, crowdsourced testing approach, LAZYCOW, to tame Android fragmentation through crowdsourced efforts.
Experimental results on thousands of test cases on real-world Android devices show that LAZYCOW is effective in automatically identifying and verifying API-induced compatibility issues.
- Score: 9.752084629147854
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Android fragmentation refers to the overwhelming diversity of Android devices
and OS versions. These lead to the impossibility of testing an app on every
supported device, leaving a number of compatibility bugs scattered in the
community and thereby resulting in poor user experiences. To mitigate this, our
fellow researchers have designed various works to automatically detect such
compatibility issues. However, the current state-of-the-art tools can only be
used to detect specific kinds of compatibility issues (i.e., compatibility
issues caused by API signature evolution), i.e., many other essential types of
compatibility issues are still unrevealed. For example, customized OS versions
on real devices and semantic changes of OS could lead to serious compatibility
issues, which are non-trivial to be detected statically. To this end, we
propose a novel, lightweight, crowdsourced testing approach, LAZYCOW, to fill
this research gap and enable the possibility of taming Android fragmentation
through crowdsourced efforts. Specifically, crowdsourced testing is an emerging
alternative to conventional mobile testing mechanisms that allow developers to
test their products on real devices to pinpoint platform-specific issues.
Experimental results on thousands of test cases on real-world Android devices
show that LAZYCOW is effective in automatically identifying and verifying
API-induced compatibility issues. Also, after investigating the user experience
through qualitative metrics, users' satisfaction provides strong evidence that
LAZYCOW is useful and welcome in practice.
Related papers
- Demystifying Device-specific Compatibility Issues in Android Apps [10.12578477875438]
We conduct an empirical study of 197 DSC issues collected from 94 open-source repositories on GitHub.
We introduce a new perspective for comprehending these issues by categorizing them into two principal groups, Functionality Breaks, and OEM Features.
The different nature of functionality break issues and OEM feature issues lead to unique challenges in addressing them.
arXiv Detail & Related papers (2024-08-03T15:34:58Z) - POGEMA: A Benchmark Platform for Cooperative Multi-Agent Navigation [76.67608003501479]
We introduce and specify an evaluation protocol defining a range of domain-related metrics computed on the basics of the primary evaluation indicators.
The results of such a comparison, which involves a variety of state-of-the-art MARL, search-based, and hybrid methods, are presented.
arXiv Detail & Related papers (2024-07-20T16:37:21Z) - A Large-scale Investigation of Semantically Incompatible APIs behind Compatibility Issues in Android Apps [13.24503570840706]
We conduct a large-scale discovery of incompatible APIs in the Android Open Source Project (AOSP)
We propose a unified framework to detect incompatible APIs, especially for semantic changes.
Our approach detects 5,481 incompatible APIs spanning from version 4 to version 33.
arXiv Detail & Related papers (2024-06-25T10:12:37Z) - Same App, Different Behaviors: Uncovering Device-specific Behaviors in Android Apps [16.015694809763538]
We present the first large-scale empirical study of device-specific behaviors in real-world Android apps.
By examining the distribution of device-specific behaviors, our analysis revealed that apps within the Chinese third-party app market exhibit more relevant behaviors compared to their counterparts in Google Play.
Beyond common behaviors like issue fixes and feature adaptations, we observed 33 aggressive apps, including popular ones with millions of downloads.
arXiv Detail & Related papers (2024-06-14T07:58:22Z) - Recover as It is Designed to Be: Recovering from Compatibility Mobile App Crashes by Reusing User Flows [7.794493667909177]
RecoFlow is a framework for enabling app developers to automatically recover an app from a crash by programming user flows with our API and visual tools.
RecoFlow tracks app feature usage with the user flows on user devices and recovers an app from a crash by replaying UI actions of the app feature disrupted by the crash.
arXiv Detail & Related papers (2024-06-03T14:03:04Z) - Practical Non-Intrusive GUI Exploration Testing with Visual-based
Robotic Arms [14.3266199543725]
We propose a practical non-intrusive GUI testing framework with visual robotic arms.
RoboTest integrates novel GUI screen and widget detection algorithms, adaptive to detecting screens of different sizes.
We evaluate RoboTest with 20 mobile apps, with a case study on an embedded system.
arXiv Detail & Related papers (2023-12-17T09:05:39Z) - Improved Compositional Generalization by Generating Demonstrations for Meta-Learning [53.818234285773165]
We show substantially improved performance on a previously unsolved compositional behaviour split without a loss of performance on other splits.
In this case, searching for relevant demonstrations even with an oracle function is not sufficient to attain good performance when using meta-learning.
arXiv Detail & Related papers (2023-05-22T14:58:54Z) - Towards a Fair Comparison and Realistic Design and Evaluation Framework
of Android Malware Detectors [63.75363908696257]
We analyze 10 influential research works on Android malware detection using a common evaluation framework.
We identify five factors that, if not taken into account when creating datasets and designing detectors, significantly affect the trained ML models.
We conclude that the studied ML-based detectors have been evaluated optimistically, which justifies the good published results.
arXiv Detail & Related papers (2022-05-25T08:28:08Z) - Mobile Behavioral Biometrics for Passive Authentication [65.94403066225384]
This work carries out a comparative analysis of unimodal and multimodal behavioral biometric traits.
Experiments are performed over HuMIdb, one of the largest and most comprehensive freely available mobile user interaction databases.
In our experiments, the most discriminative background sensor is the magnetometer, whereas among touch tasks the best results are achieved with keystroke.
arXiv Detail & Related papers (2022-03-14T17:05:59Z) - Federated Learning-based Active Authentication on Mobile Devices [98.23904302910022]
User active authentication on mobile devices aims to learn a model that can correctly recognize the enrolled user based on device sensor information.
We propose a novel user active authentication training, termed as Federated Active Authentication (FAA)
We show that existing FL/SL methods are suboptimal for FAA as they rely on the data to be distributed homogeneously.
arXiv Detail & Related papers (2021-04-14T22:59:08Z) - Emerging App Issue Identification via Online Joint Sentiment-Topic
Tracing [66.57888248681303]
We propose a novel emerging issue detection approach named MERIT.
Based on the AOBST model, we infer the topics negatively reflected in user reviews for one app version.
Experiments on popular apps from Google Play and Apple's App Store demonstrate the effectiveness of MERIT.
arXiv Detail & Related papers (2020-08-23T06:34:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.