Instance Neural Radiance Field
- URL: http://arxiv.org/abs/2304.04395v3
- Date: Mon, 4 Sep 2023 03:26:41 GMT
- Title: Instance Neural Radiance Field
- Authors: Yichen Liu, Benran Hu, Junkai Huang, Yu-Wing Tai, Chi-Keung Tang
- Abstract summary: This paper presents one of the first learning-based NeRF 3D instance segmentation pipelines, dubbed as Instance Neural Radiance Field.
We adopt a 3D proposal-based mask prediction network on the sampled volumetric features from NeRF.
Our method is also one of the first to achieve such results in pure inference.
- Score: 62.152611795824185
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper presents one of the first learning-based NeRF 3D instance
segmentation pipelines, dubbed as Instance Neural Radiance Field, or Instance
NeRF. Taking a NeRF pretrained from multi-view RGB images as input, Instance
NeRF can learn 3D instance segmentation of a given scene, represented as an
instance field component of the NeRF model. To this end, we adopt a 3D
proposal-based mask prediction network on the sampled volumetric features from
NeRF, which generates discrete 3D instance masks. The coarse 3D mask prediction
is then projected to image space to match 2D segmentation masks from different
views generated by existing panoptic segmentation models, which are used to
supervise the training of the instance field. Notably, beyond generating
consistent 2D segmentation maps from novel views, Instance NeRF can query
instance information at any 3D point, which greatly enhances NeRF object
segmentation and manipulation. Our method is also one of the first to achieve
such results in pure inference. Experimented on synthetic and real-world NeRF
datasets with complex indoor scenes, Instance NeRF surpasses previous NeRF
segmentation works and competitive 2D segmentation methods in segmentation
performance on unseen views. Watch the demo video at
https://youtu.be/wW9Bme73coI. Code and data are available at
https://github.com/lyclyc52/Instance_NeRF.
Related papers
- NeRFDeformer: NeRF Transformation from a Single View via 3D Scene Flows [60.291277312569285]
We present a method for automatically modifying a NeRF representation based on a single observation.
Our method defines the transformation as a 3D flow, specifically as a weighted linear blending of rigid transformations.
We also introduce a new dataset for exploring the problem of modifying a NeRF scene through a single observation.
arXiv Detail & Related papers (2024-06-15T07:58:08Z) - SANeRF-HQ: Segment Anything for NeRF in High Quality [61.77762568224097]
We introduce the Segment Anything for NeRF in High Quality (SANeRF-HQ) to achieve high-quality 3D segmentation of any target object in a given scene.
We employ density field and RGB similarity to enhance the accuracy of segmentation boundary during the aggregation.
arXiv Detail & Related papers (2023-12-03T23:09:38Z) - Obj-NeRF: Extract Object NeRFs from Multi-view Images [7.669778218573394]
We propose -NeRF, a comprehensive pipeline that recovers the 3D geometry of a specific object from multi-view images using a single prompt.
We also apply -NeRF to various applications, including object removal, rotation, replacement, and recoloring.
arXiv Detail & Related papers (2023-11-26T13:15:37Z) - Registering Neural Radiance Fields as 3D Density Images [55.64859832225061]
We propose to use universal pre-trained neural networks that can be trained and tested on different scenes.
We demonstrate that our method, as a global approach, can effectively register NeRF models.
arXiv Detail & Related papers (2023-05-22T09:08:46Z) - FeatureNeRF: Learning Generalizable NeRFs by Distilling Foundation
Models [21.523836478458524]
Recent works on generalizable NeRFs have shown promising results on novel view synthesis from single or few images.
We propose a novel framework named FeatureNeRF to learn generalizable NeRFs by distilling pre-trained vision models.
Our experiments demonstrate the effectiveness of FeatureNeRF as a generalizable 3D semantic feature extractor.
arXiv Detail & Related papers (2023-03-22T17:57:01Z) - SegNeRF: 3D Part Segmentation with Neural Radiance Fields [63.12841224024818]
SegNeRF is a neural field representation that integrates a semantic field along with the usual radiance field.
SegNeRF is capable of simultaneously predicting geometry, appearance, and semantic information from posed images, even for unseen objects.
SegNeRF is able to generate an explicit 3D model from a single image of an object taken in the wild, with its corresponding part segmentation.
arXiv Detail & Related papers (2022-11-21T07:16:03Z) - NeRF-SOS: Any-View Self-supervised Object Segmentation from Complex
Real-World Scenes [80.59831861186227]
This paper carries out the exploration of self-supervised learning for object segmentation using NeRF for complex real-world scenes.
Our framework, called NeRF with Self-supervised Object NeRF-SOS, encourages NeRF models to distill compact geometry-aware segmentation clusters.
It consistently surpasses other 2D-based self-supervised baselines and predicts finer semantics masks than existing supervised counterparts.
arXiv Detail & Related papers (2022-09-19T06:03:17Z) - Decomposing 3D Scenes into Objects via Unsupervised Volume Segmentation [26.868351498722884]
We present ObSuRF, a method which turns a single image of a scene into a 3D model represented as a set of Neural Radiance Fields (NeRFs)
We make learning more computationally efficient by deriving a novel loss, which allows training NeRFs on RGB-D inputs without explicit ray marching.
arXiv Detail & Related papers (2021-04-02T16:59:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.