Reconstruction-driven Dynamic Refinement based Unsupervised Domain
Adaptation for Joint Optic Disc and Cup Segmentation
- URL: http://arxiv.org/abs/2304.04581v1
- Date: Mon, 10 Apr 2023 13:33:13 GMT
- Title: Reconstruction-driven Dynamic Refinement based Unsupervised Domain
Adaptation for Joint Optic Disc and Cup Segmentation
- Authors: Ziyang Chen, Yongsheng Pan, Yong Xia
- Abstract summary: Glaucoma is one of the leading causes of irreversible blindness.
It remains challenging to train an OD/OC segmentation model that could be deployed successfully to different healthcare centers.
We propose a novel unsupervised domain adaptation (UDA) method called Reconstruction-driven Dynamic Refinement Network (RDR-Net)
- Score: 25.750583118977833
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Glaucoma is one of the leading causes of irreversible blindness. Segmentation
of optic disc (OD) and optic cup (OC) on fundus images is a crucial step in
glaucoma screening. Although many deep learning models have been constructed
for this task, it remains challenging to train an OD/OC segmentation model that
could be deployed successfully to different healthcare centers. The
difficulties mainly comes from the domain shift issue, i.e., the fundus images
collected at these centers usually vary greatly in the tone, contrast, and
brightness. To address this issue, in this paper, we propose a novel
unsupervised domain adaptation (UDA) method called Reconstruction-driven
Dynamic Refinement Network (RDR-Net), where we employ a due-path segmentation
backbone for simultaneous edge detection and region prediction and design three
modules to alleviate the domain gap. The reconstruction alignment (RA) module
uses a variational auto-encoder (VAE) to reconstruct the input image and thus
boosts the image representation ability of the network in a self-supervised
way. It also uses a style-consistency constraint to force the network to retain
more domain-invariant information. The low-level feature refinement (LFR)
module employs input-specific dynamic convolutions to suppress the
domain-variant information in the obtained low-level features. The
prediction-map alignment (PMA) module elaborates the entropy-driven adversarial
learning to encourage the network to generate source-like boundaries and
regions. We evaluated our RDR-Net against state-of-the-art solutions on four
public fundus image datasets. Our results indicate that RDR-Net is superior to
competing models in both segmentation performance and generalization ability
Related papers
- Adaptive Feature Fusion Neural Network for Glaucoma Segmentation on Unseen Fundus Images [13.03504366061946]
We propose a method named Adaptive Feature-fusion Neural Network (AFNN) for glaucoma segmentation on unseen domains.
The domain adaptor helps the pretrained-model fast adapt from other image domains to the medical fundus image domain.
Our proposed method achieves a competitive performance over existing fundus segmentation methods on four public glaucoma datasets.
arXiv Detail & Related papers (2024-04-02T16:30:12Z) - In-Domain GAN Inversion for Faithful Reconstruction and Editability [132.68255553099834]
We propose in-domain GAN inversion, which consists of a domain-guided domain-regularized and a encoder to regularize the inverted code in the native latent space of the pre-trained GAN model.
We make comprehensive analyses on the effects of the encoder structure, the starting inversion point, as well as the inversion parameter space, and observe the trade-off between the reconstruction quality and the editing property.
arXiv Detail & Related papers (2023-09-25T08:42:06Z) - SMC-UDA: Structure-Modal Constraint for Unsupervised Cross-Domain Renal
Segmentation [100.86339246424541]
We propose a novel Structure-Modal Constrained (SMC) UDA framework based on a discriminative paradigm and introduce edge structure as a bridge between domains.
With the structure-constrained self-learning and progressive ROI, our methods segment the kidney by locating the 3D spatial structure of the edge.
experiments show that our proposed SMC-UDA has a strong generalization and outperforms generative UDA methods.
arXiv Detail & Related papers (2023-06-14T02:57:23Z) - ReContrast: Domain-Specific Anomaly Detection via Contrastive
Reconstruction [29.370142078092375]
Most advanced unsupervised anomaly detection (UAD) methods rely on modeling feature representations of frozen encoder networks pre-trained on large-scale datasets.
We propose a novel epistemic UAD method, namely ReContrast, which optimize the entire network to reduce biases towards the pre-trained image domain.
We conduct experiments across two popular industrial defect detection benchmarks and three medical image UAD tasks, which shows our superiority over current state-of-the-art methods.
arXiv Detail & Related papers (2023-06-05T05:21:15Z) - Unsupervised domain adaptation semantic segmentation of high-resolution
remote sensing imagery with invariant domain-level context memory [10.210120085157161]
This study proposes a novel unsupervised domain adaptation semantic segmentation network (MemoryAdaptNet) for the semantic segmentation of HRS imagery.
MemoryAdaptNet constructs an output space adversarial learning scheme to bridge the domain distribution discrepancy between source domain and target domain.
Experiments under three cross-domain tasks indicate that our proposed MemoryAdaptNet is remarkably superior to the state-of-the-art methods.
arXiv Detail & Related papers (2022-08-16T12:35:57Z) - Stagewise Unsupervised Domain Adaptation with Adversarial Self-Training
for Road Segmentation of Remote Sensing Images [93.50240389540252]
Road segmentation from remote sensing images is a challenging task with wide ranges of application potentials.
We propose a novel stagewise domain adaptation model called RoadDA to address the domain shift (DS) issue in this field.
Experiment results on two benchmarks demonstrate that RoadDA can efficiently reduce the domain gap and outperforms state-of-the-art methods.
arXiv Detail & Related papers (2021-08-28T09:29:14Z) - Cross-Modality Brain Tumor Segmentation via Bidirectional
Global-to-Local Unsupervised Domain Adaptation [61.01704175938995]
In this paper, we propose a novel Bidirectional Global-to-Local (BiGL) adaptation framework under a UDA scheme.
Specifically, a bidirectional image synthesis and segmentation module is proposed to segment the brain tumor.
The proposed method outperforms several state-of-the-art unsupervised domain adaptation methods by a large margin.
arXiv Detail & Related papers (2021-05-17T10:11:45Z) - Adapt Everywhere: Unsupervised Adaptation of Point-Clouds and Entropy
Minimisation for Multi-modal Cardiac Image Segmentation [10.417009344120917]
We present a novel UDA method for multi-modal cardiac image segmentation.
The proposed method is based on adversarial learning and adapts network features between source and target domain in different spaces.
We validated our method on two cardiac datasets by adapting from the annotated source domain to the unannotated target domain.
arXiv Detail & Related papers (2021-03-15T08:59:44Z) - Unsupervised Instance Segmentation in Microscopy Images via Panoptic
Domain Adaptation and Task Re-weighting [86.33696045574692]
We propose a Cycle Consistency Panoptic Domain Adaptive Mask R-CNN (CyC-PDAM) architecture for unsupervised nuclei segmentation in histopathology images.
We first propose a nuclei inpainting mechanism to remove the auxiliary generated objects in the synthesized images.
Secondly, a semantic branch with a domain discriminator is designed to achieve panoptic-level domain adaptation.
arXiv Detail & Related papers (2020-05-05T11:08:26Z) - Deep Adaptive Inference Networks for Single Image Super-Resolution [72.7304455761067]
Single image super-resolution (SISR) has witnessed tremendous progress in recent years owing to the deployment of deep convolutional neural networks (CNNs)
In this paper, we take a step forward to address this issue by leveraging the adaptive inference networks for deep SISR (AdaDSR)
Our AdaDSR involves an SISR model as backbone and a lightweight adapter module which takes image features and resource constraint as input and predicts a map of local network depth.
arXiv Detail & Related papers (2020-04-08T10:08:20Z) - Domain Adaptive Medical Image Segmentation via Adversarial Learning of
Disease-Specific Spatial Patterns [6.298270929323396]
We propose an unsupervised domain adaptation framework for boosting image segmentation performance across multiple domains.
We enforce architectures to be adaptive to new data by rejecting improbable segmentation patterns and implicitly learning through semantic and boundary information.
We demonstrate that recalibrating the deep networks on a few unlabeled images from the target domain improves the segmentation accuracy significantly.
arXiv Detail & Related papers (2020-01-25T13:48:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.