Multi-Graph Convolution Network for Pose Forecasting
- URL: http://arxiv.org/abs/2304.04956v1
- Date: Tue, 11 Apr 2023 03:59:43 GMT
- Title: Multi-Graph Convolution Network for Pose Forecasting
- Authors: Hongwei Ren, Yuhong Shi, Kewei Liang
- Abstract summary: We propose a novel approach called the multi-graph convolution network (MGCN) for 3D human pose forecasting.
MGCN simultaneously captures spatial and temporal information by introducing an augmented graph for pose sequences.
In our evaluation, MGCN outperforms the state-of-the-art in pose prediction.
- Score: 0.8057006406834467
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recently, there has been a growing interest in predicting human motion, which
involves forecasting future body poses based on observed pose sequences. This
task is complex due to modeling spatial and temporal relationships. The most
commonly used models for this task are autoregressive models, such as recurrent
neural networks (RNNs) or variants, and Transformer Networks. However, RNNs
have several drawbacks, such as vanishing or exploding gradients. Other
researchers have attempted to solve the communication problem in the spatial
dimension by integrating Graph Convolutional Networks (GCN) and Long Short-Term
Memory (LSTM) models. These works deal with temporal and spatial information
separately, which limits the effectiveness. To fix this problem, we propose a
novel approach called the multi-graph convolution network (MGCN) for 3D human
pose forecasting. This model simultaneously captures spatial and temporal
information by introducing an augmented graph for pose sequences. Multiple
frames give multiple parts, joined together in a single graph instance.
Furthermore, we also explore the influence of natural structure and
sequence-aware attention to our model. In our experimental evaluation of the
large-scale benchmark datasets, Human3.6M, AMSS and 3DPW, MGCN outperforms the
state-of-the-art in pose prediction.
Related papers
- Multivariate Time-Series Anomaly Detection based on Enhancing Graph Attention Networks with Topological Analysis [31.43159668073136]
Unsupervised anomaly detection in time series is essential in industrial applications, as it significantly reduces the need for manual intervention.
Traditional methods use Graph Neural Networks (GNNs) or Transformers to analyze spatial while RNNs to model temporal dependencies.
This paper introduces a novel temporal model built on an enhanced Graph Attention Network (GAT) for multivariate time series anomaly detection called TopoGDN.
arXiv Detail & Related papers (2024-08-23T14:06:30Z) - Multi-Scale Spatial-Temporal Self-Attention Graph Convolutional Networks for Skeleton-based Action Recognition [0.0]
In this paper, we propose self-attention GCN hybrid model, Multi-Scale Spatial-Temporal self-attention (MSST)-GCN.
We utilize spatial self-attention module with adaptive topology to understand intra-frame interactions within a frame among different body parts, and temporal self-attention module to examine correlations between frames of a node.
arXiv Detail & Related papers (2024-04-03T10:25:45Z) - Multiscale Residual Learning of Graph Convolutional Sequence Chunks for
Human Motion Prediction [23.212848643552395]
A new method is proposed for human motion prediction by learning temporal and spatial dependencies.
Our proposed method is able to effectively model the sequence information for motion prediction and outperform other techniques to set a new state-of-the-art.
arXiv Detail & Related papers (2023-08-31T15:23:33Z) - Multivariate Time Series Forecasting with Dynamic Graph Neural ODEs [65.18780403244178]
We propose a continuous model to forecast Multivariate Time series with dynamic Graph neural Ordinary Differential Equations (MTGODE)
Specifically, we first abstract multivariate time series into dynamic graphs with time-evolving node features and unknown graph structures.
Then, we design and solve a neural ODE to complement missing graph topologies and unify both spatial and temporal message passing.
arXiv Detail & Related papers (2022-02-17T02:17:31Z) - Spatio-Temporal Joint Graph Convolutional Networks for Traffic
Forecasting [75.10017445699532]
Recent have shifted their focus towards formulating traffic forecasting as atemporal graph modeling problem.
We propose a novel approach for accurate traffic forecasting on road networks over multiple future time steps.
arXiv Detail & Related papers (2021-11-25T08:45:14Z) - Space-Time-Separable Graph Convolutional Network for Pose Forecasting [3.6417475195085602]
STS-GCN models the human pose dynamics only with a graph convolutional network (GCN)
The space-time graph connectivity is factored into space and time affinity, which bottlenecks the space-time cross-talk, while enabling full joint-joint and time-time correlations.
arXiv Detail & Related papers (2021-10-09T13:59:30Z) - Multiscale Spatio-Temporal Graph Neural Networks for 3D Skeleton-Based
Motion Prediction [92.16318571149553]
We propose a multiscale-temporal graph neural network (MST-GNN) to predict the future 3D-based skeleton human poses.
The MST-GNN outperforms state-of-the-art methods in both short and long-term motion prediction.
arXiv Detail & Related papers (2021-08-25T14:05:37Z) - MSR-GCN: Multi-Scale Residual Graph Convolution Networks for Human
Motion Prediction [34.565986275769745]
We propose a novel Multi-Scale Residual Graph Convolution Network (MSR-GCN) for human pose prediction task.
Our proposed approach is evaluated on two standard benchmark datasets, i.e., the Human3.6M dataset and the CMU Mocap dataset.
arXiv Detail & Related papers (2021-08-16T15:26:23Z) - 3D Human Pose Regression using Graph Convolutional Network [68.8204255655161]
We propose a graph convolutional network named PoseGraphNet for 3D human pose regression from 2D poses.
Our model's performance is close to the state-of-the-art, but with much fewer parameters.
arXiv Detail & Related papers (2021-05-21T14:41:31Z) - Connecting the Dots: Multivariate Time Series Forecasting with Graph
Neural Networks [91.65637773358347]
We propose a general graph neural network framework designed specifically for multivariate time series data.
Our approach automatically extracts the uni-directed relations among variables through a graph learning module.
Our proposed model outperforms the state-of-the-art baseline methods on 3 of 4 benchmark datasets.
arXiv Detail & Related papers (2020-05-24T04:02:18Z) - Disentangling and Unifying Graph Convolutions for Skeleton-Based Action
Recognition [79.33539539956186]
We propose a simple method to disentangle multi-scale graph convolutions and a unified spatial-temporal graph convolutional operator named G3D.
By coupling these proposals, we develop a powerful feature extractor named MS-G3D based on which our model outperforms previous state-of-the-art methods on three large-scale datasets.
arXiv Detail & Related papers (2020-03-31T11:28:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.