Efficient Feature Description for Small Body Relative Navigation using
Binary Convolutional Neural Networks
- URL: http://arxiv.org/abs/2304.04985v1
- Date: Tue, 11 Apr 2023 05:09:46 GMT
- Title: Efficient Feature Description for Small Body Relative Navigation using
Binary Convolutional Neural Networks
- Authors: Travis Driver and Panagiotis Tsiotras
- Abstract summary: This paper introduces a novel deep local feature description architecture that leverages binary convolutional neural network layers.
We train and test our models on real images of small bodies from legacy and ongoing missions.
We implement our models onboard a surrogate for the next-generation spacecraft processor and demonstrate feasible runtimes for online feature tracking.
- Score: 17.15829643665034
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Missions to small celestial bodies rely heavily on optical feature tracking
for characterization of and relative navigation around the target body. While
techniques for feature tracking based on deep learning are a promising
alternative to current human-in-the-loop processes, designing deep
architectures that can operate onboard spacecraft is challenging due to onboard
computational and memory constraints. This paper introduces a novel deep local
feature description architecture that leverages binary convolutional neural
network layers to significantly reduce computational and memory requirements.
We train and test our models on real images of small bodies from legacy and
ongoing missions and demonstrate increased performance relative to traditional
handcrafted methods. Moreover, we implement our models onboard a surrogate for
the next-generation spacecraft processor and demonstrate feasible runtimes for
online feature tracking.
Related papers
- Task-Oriented Real-time Visual Inference for IoVT Systems: A Co-design Framework of Neural Networks and Edge Deployment [61.20689382879937]
Task-oriented edge computing addresses this by shifting data analysis to the edge.
Existing methods struggle to balance high model performance with low resource consumption.
We propose a novel co-design framework to optimize neural network architecture.
arXiv Detail & Related papers (2024-10-29T19:02:54Z) - Gaussian Splatting to Real World Flight Navigation Transfer with Liquid Networks [93.38375271826202]
We present a method to improve generalization and robustness to distribution shifts in sim-to-real visual quadrotor navigation tasks.
We first build a simulator by integrating Gaussian splatting with quadrotor flight dynamics, and then, train robust navigation policies using Liquid neural networks.
In this way, we obtain a full-stack imitation learning protocol that combines advances in 3D Gaussian splatting radiance field rendering, programming of expert demonstration training data, and the task understanding capabilities of Liquid networks.
arXiv Detail & Related papers (2024-06-21T13:48:37Z) - Neuromorphic Optical Flow and Real-time Implementation with Event
Cameras [47.11134388304464]
We build on the latest developments in event-based vision and spiking neural networks.
We propose a new network architecture that improves the state-of-the-art self-supervised optical flow accuracy.
We demonstrate high speed optical flow prediction with almost two orders of magnitude reduced complexity.
arXiv Detail & Related papers (2023-04-14T14:03:35Z) - Design of Convolutional Extreme Learning Machines for Vision-Based
Navigation Around Small Bodies [0.0]
Deep learning architectures such as convolutional neural networks are the standard in computer vision for image processing tasks.
Their accuracy however often comes at the cost of long and computationally expensive training.
A different method known as convolutional extreme learning machine has shown the potential to perform equally with a dramatic decrease in training time.
arXiv Detail & Related papers (2022-10-28T16:24:21Z) - AstroVision: Towards Autonomous Feature Detection and Description for
Missions to Small Bodies Using Deep Learning [14.35670544436183]
This paper introduces AstroVision, a large-scale dataset comprised of 115,970 densely annotated, real images of 16 different small bodies captured during past and ongoing missions.
We leverage AstroVision to develop a set of standardized benchmarks and conduct an exhaustive evaluation of both handcrafted and data-driven feature detection and description methods.
Next, we employ AstroVision for end-to-end training of a state-of-the-art, deep feature detection and description network and demonstrate improved performance on multiple benchmarks.
arXiv Detail & Related papers (2022-08-03T13:18:44Z) - Dynamic Spatial Sparsification for Efficient Vision Transformers and
Convolutional Neural Networks [88.77951448313486]
We present a new approach for model acceleration by exploiting spatial sparsity in visual data.
We propose a dynamic token sparsification framework to prune redundant tokens.
We extend our method to hierarchical models including CNNs and hierarchical vision Transformers.
arXiv Detail & Related papers (2022-07-04T17:00:51Z) - Deep Learning for Real Time Satellite Pose Estimation on Low Power Edge
TPU [58.720142291102135]
In this paper we propose a pose estimation software exploiting neural network architectures.
We show how low power machine learning accelerators could enable Artificial Intelligence exploitation in space.
arXiv Detail & Related papers (2022-04-07T08:53:18Z) - Spatio-Temporal Recurrent Networks for Event-Based Optical Flow
Estimation [47.984368369734995]
We introduce a novel recurrent encoding-decoding neural network architecture for event-based optical flow estimation.
The network is end-to-end trained with self-supervised learning on the Multi-Vehicle Stereo Event Camera dataset.
We have shown that it outperforms all the existing state-of-the-art methods by a large margin.
arXiv Detail & Related papers (2021-09-10T13:37:37Z) - Optical Flow Estimation from a Single Motion-blurred Image [66.2061278123057]
Motion blur in an image may have practical interests in fundamental computer vision problems.
We propose a novel framework to estimate optical flow from a single motion-blurred image in an end-to-end manner.
arXiv Detail & Related papers (2021-03-04T12:45:18Z) - On Deep Learning Techniques to Boost Monocular Depth Estimation for
Autonomous Navigation [1.9007546108571112]
Inferring the depth of images is a fundamental inverse problem within the field of Computer Vision.
We propose a new lightweight and fast supervised CNN architecture combined with novel feature extraction models.
We also introduce an efficient surface normals module, jointly with a simple geometric 2.5D loss function, to solve SIDE problems.
arXiv Detail & Related papers (2020-10-13T18:37:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.