TodyNet: Temporal Dynamic Graph Neural Network for Multivariate Time
Series Classification
- URL: http://arxiv.org/abs/2304.05078v1
- Date: Tue, 11 Apr 2023 09:21:28 GMT
- Title: TodyNet: Temporal Dynamic Graph Neural Network for Multivariate Time
Series Classification
- Authors: Huaiyuan Liu, Xianzhang Liu, Donghua Yang, Zhiyu Liang, Hongzhi Wang,
Yong Cui, Jun Gu
- Abstract summary: We propose a novel temporal dynamic neural graph network (TodyNet) that can extract hidden-temporal dependencies without undefined graph structure.
The experiments on 26 UEA benchmark datasets illustrate that the proposed TodyNet outperforms existing deep learning-based methods in the MTSC tasks.
- Score: 6.76723360505692
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multivariate time series classification (MTSC) is an important data mining
task, which can be effectively solved by popular deep learning technology.
Unfortunately, the existing deep learning-based methods neglect the hidden
dependencies in different dimensions and also rarely consider the unique
dynamic features of time series, which lack sufficient feature extraction
capability to obtain satisfactory classification accuracy. To address this
problem, we propose a novel temporal dynamic graph neural network (TodyNet)
that can extract hidden spatio-temporal dependencies without undefined graph
structure. It enables information flow among isolated but implicit
interdependent variables and captures the associations between different time
slots by dynamic graph mechanism, which further improves the classification
performance of the model. Meanwhile, the hierarchical representations of graphs
cannot be learned due to the limitation of GNNs. Thus, we also design a
temporal graph pooling layer to obtain a global graph-level representation for
graph learning with learnable temporal parameters. The dynamic graph, graph
information propagation, and temporal convolution are jointly learned in an
end-to-end framework. The experiments on 26 UEA benchmark datasets illustrate
that the proposed TodyNet outperforms existing deep learning-based methods in
the MTSC tasks.
Related papers
- TimeGraphs: Graph-based Temporal Reasoning [64.18083371645956]
TimeGraphs is a novel approach that characterizes dynamic interactions as a hierarchical temporal graph.
Our approach models the interactions using a compact graph-based representation, enabling adaptive reasoning across diverse time scales.
We evaluate TimeGraphs on multiple datasets with complex, dynamic agent interactions, including a football simulator, the Resistance game, and the MOMA human activity dataset.
arXiv Detail & Related papers (2024-01-06T06:26:49Z) - MTS2Graph: Interpretable Multivariate Time Series Classification with
Temporal Evolving Graphs [1.1756822700775666]
We introduce a new framework for interpreting time series data by extracting and clustering the input representative patterns.
We run experiments on eight datasets of the UCR/UEA archive, along with HAR and PAM datasets.
arXiv Detail & Related papers (2023-06-06T16:24:27Z) - Deep Temporal Graph Clustering [77.02070768950145]
We propose a general framework for deep Temporal Graph Clustering (GC)
GC introduces deep clustering techniques to suit the interaction sequence-based batch-processing pattern of temporal graphs.
Our framework can effectively improve the performance of existing temporal graph learning methods.
arXiv Detail & Related papers (2023-05-18T06:17:50Z) - Temporal Aggregation and Propagation Graph Neural Networks for Dynamic
Representation [67.26422477327179]
Temporal graphs exhibit dynamic interactions between nodes over continuous time.
We propose a novel method of temporal graph convolution with the whole neighborhood.
Our proposed TAP-GNN outperforms existing temporal graph methods by a large margin in terms of both predictive performance and online inference latency.
arXiv Detail & Related papers (2023-04-15T08:17:18Z) - FTM: A Frame-level Timeline Modeling Method for Temporal Graph
Representation Learning [47.52733127616005]
We propose a Frame-level Timeline Modeling (FTM) method that helps to capture both short-term and long-term features.
Our method can be easily assembled with most temporal GNNs.
arXiv Detail & Related papers (2023-02-23T06:53:16Z) - Dynamic Graph Message Passing Networks for Visual Recognition [112.49513303433606]
Modelling long-range dependencies is critical for scene understanding tasks in computer vision.
A fully-connected graph is beneficial for such modelling, but its computational overhead is prohibitive.
We propose a dynamic graph message passing network, that significantly reduces the computational complexity.
arXiv Detail & Related papers (2022-09-20T14:41:37Z) - Deep Dynamic Effective Connectivity Estimation from Multivariate Time
Series [0.0]
We develop dynamic effective connectivity estimation via neural network training (DECENNT)
DECENNT outperforms state-of-the-art (SOTA) methods on five different tasks and infers interpretable task-specific dynamic graphs.
arXiv Detail & Related papers (2022-02-04T21:14:21Z) - Learning Sparse and Continuous Graph Structures for Multivariate Time
Series Forecasting [5.359968374560132]
Learning Sparse and Continuous Graphs for Forecasting (LSCGF) is a novel deep learning model that joins graph learning and forecasting.
In this paper, we propose a brand new method named Smooth Sparse Unit (SSU) to learn sparse and continuous graph adjacency matrix.
Our model achieves state-of-the-art performances with minor trainable parameters.
arXiv Detail & Related papers (2022-01-24T13:35:37Z) - Dynamic Graph Learning-Neural Network for Multivariate Time Series
Modeling [2.3022070933226217]
We propose a novel framework, namely static- and dynamic-graph learning-neural network (GL)
The model acquires static and dynamic graph matrices from data to model long-term and short-term patterns respectively.
It achieves state-of-the-art performance on almost all datasets.
arXiv Detail & Related papers (2021-12-06T08:19:15Z) - Multivariate Time Series Classification with Hierarchical Variational
Graph Pooling [23.66868187446734]
Existing deep learning-based MTSC techniques are primarily concerned with the temporal dependency of single time series.
We propose a novel graph pooling-based framework MTPool to obtain the expressive global representation of MTS.
Experiments on ten benchmark datasets exhibit MTPool outperforms state-of-the-art strategies in the MTSC task.
arXiv Detail & Related papers (2020-10-12T12:36:47Z) - Connecting the Dots: Multivariate Time Series Forecasting with Graph
Neural Networks [91.65637773358347]
We propose a general graph neural network framework designed specifically for multivariate time series data.
Our approach automatically extracts the uni-directed relations among variables through a graph learning module.
Our proposed model outperforms the state-of-the-art baseline methods on 3 of 4 benchmark datasets.
arXiv Detail & Related papers (2020-05-24T04:02:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.