Artificial Collective Intelligence Engineering: a Survey of Concepts and
Perspectives
- URL: http://arxiv.org/abs/2304.05147v1
- Date: Tue, 11 Apr 2023 11:22:47 GMT
- Title: Artificial Collective Intelligence Engineering: a Survey of Concepts and
Perspectives
- Authors: Roberto Casadei
- Abstract summary: Collective intelligence is the capability of a group to act collectively in a seemingly intelligent way.
Artificial and computational collective intelligence are recognised research topics.
This paper considers a set of broad scoping questions providing a map of collective intelligence research.
- Score: 1.2183405753834562
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Collectiveness is an important property of many systems--both natural and
artificial. By exploiting a large number of individuals, it is often possible
to produce effects that go far beyond the capabilities of the smartest
individuals, or even to produce intelligent collective behaviour out of
not-so-intelligent individuals. Indeed, collective intelligence, namely the
capability of a group to act collectively in a seemingly intelligent way, is
increasingly often a design goal of engineered computational systems--motivated
by recent techno-scientific trends like the Internet of Things, swarm robotics,
and crowd computing, just to name a few. For several years, the collective
intelligence observed in natural and artificial systems has served as a source
of inspiration for engineering ideas, models, and mechanisms. Today, artificial
and computational collective intelligence are recognised research topics,
spanning various techniques, kinds of target systems, and application domains.
However, there is still a lot of fragmentation in the research panorama of the
topic within computer science, and the verticality of most communities and
contributions makes it difficult to extract the core underlying ideas and
frames of reference. The challenge is to identify, place in a common structure,
and ultimately connect the different areas and methods addressing intelligent
collectives. To address this gap, this paper considers a set of broad scoping
questions providing a map of collective intelligence research, mostly by the
point of view of computer scientists and engineers. Accordingly, it covers
preliminary notions, fundamental concepts, and the main research perspectives,
identifying opportunities and challenges for researchers on artificial and
computational collective intelligence engineering.
Related papers
- Theory of Mind Enhances Collective Intelligence [1.8434042562191815]
We argue that flexible collective intelligence in human social settings is improved by our use of a specific cognitive tool: our Theory of Mind.
We then place these capabilities in the context of the next steps in artificial intelligence embedded in a future that includes an effective human-AI hybrid social ecology.
arXiv Detail & Related papers (2024-11-14T03:58:50Z) - SciAgents: Automating scientific discovery through multi-agent intelligent graph reasoning [0.0]
A key challenge in artificial intelligence is the creation of systems capable of autonomously advancing scientific understanding.
We present SciAgents, an approach that leverages three core concepts.
The framework autonomously generates and refines research hypotheses, elucidating underlying mechanisms, design principles, and unexpected material properties.
Our case studies demonstrate scalable capabilities to combine generative AI, ontological representations, and multi-agent modeling, harnessing a swarm of intelligence' similar to biological systems.
arXiv Detail & Related papers (2024-09-09T12:25:10Z) - Advancing Social Intelligence in AI Agents: Technical Challenges and Open Questions [67.60397632819202]
Building socially-intelligent AI agents (Social-AI) is a multidisciplinary, multimodal research goal.
We identify a set of underlying technical challenges and open questions for researchers across computing communities to advance Social-AI.
arXiv Detail & Related papers (2024-04-17T02:57:42Z) - Position Paper: Agent AI Towards a Holistic Intelligence [53.35971598180146]
We emphasize developing Agent AI -- an embodied system that integrates large foundation models into agent actions.
In this paper, we propose a novel large action model to achieve embodied intelligent behavior, the Agent Foundation Model.
arXiv Detail & Related papers (2024-02-28T16:09:56Z) - A Survey on Robotics with Foundation Models: toward Embodied AI [30.999414445286757]
Recent advances in computer vision, natural language processing, and multi-modality learning have shown that the foundation models have superhuman capabilities for specific tasks.
This survey aims to provide a comprehensive and up-to-date overview of foundation models in robotics, focusing on autonomous manipulation and encompassing high-level planning and low-level control.
arXiv Detail & Related papers (2024-02-04T07:55:01Z) - AI for Mathematics: A Cognitive Science Perspective [86.02346372284292]
Mathematics is one of the most powerful conceptual systems developed and used by the human species.
Rapid progress in AI, particularly propelled by advances in large language models (LLMs), has sparked renewed, widespread interest in building such systems.
arXiv Detail & Related papers (2023-10-19T02:00:31Z) - A Neuro-mimetic Realization of the Common Model of Cognition via Hebbian
Learning and Free Energy Minimization [55.11642177631929]
Large neural generative models are capable of synthesizing semantically rich passages of text or producing complex images.
We discuss the COGnitive Neural GENerative system, such an architecture that casts the Common Model of Cognition.
arXiv Detail & Related papers (2023-10-14T23:28:48Z) - The Future of Fundamental Science Led by Generative Closed-Loop
Artificial Intelligence [67.70415658080121]
Recent advances in machine learning and AI are disrupting technological innovation, product development, and society as a whole.
AI has contributed less to fundamental science in part because large data sets of high-quality data for scientific practice and model discovery are more difficult to access.
Here we explore and investigate aspects of an AI-driven, automated, closed-loop approach to scientific discovery.
arXiv Detail & Related papers (2023-07-09T21:16:56Z) - Foundations and Recent Trends in Multimodal Machine Learning:
Principles, Challenges, and Open Questions [68.6358773622615]
This paper provides an overview of the computational and theoretical foundations of multimodal machine learning.
We propose a taxonomy of 6 core technical challenges: representation, alignment, reasoning, generation, transference, and quantification.
Recent technical achievements will be presented through the lens of this taxonomy, allowing researchers to understand the similarities and differences across new approaches.
arXiv Detail & Related papers (2022-09-07T19:21:19Z) - Collective Intelligence for Deep Learning: A Survey of Recent
Developments [11.247894240593691]
We will provide a historical context of neural network research's involvement with complex systems.
We will highlight several active areas in modern deep learning research that incorporate the principles of collective intelligence.
arXiv Detail & Related papers (2021-11-29T08:39:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.