Learning to search for and detect objects in foveal images using deep
learning
- URL: http://arxiv.org/abs/2304.05741v1
- Date: Wed, 12 Apr 2023 09:50:25 GMT
- Title: Learning to search for and detect objects in foveal images using deep
learning
- Authors: Beatriz Paula and Plinio Moreno
- Abstract summary: This study employs a fixation prediction model that emulates human objective-guided attention of searching for a given class in an image.
The foveated pictures at each fixation point are then classified to determine whether the target is present or absent in the scene.
We present a novel dual task model capable of performing fixation prediction and detection simultaneously, allowing knowledge transfer between the two tasks.
- Score: 3.655021726150368
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The human visual system processes images with varied degrees of resolution,
with the fovea, a small portion of the retina, capturing the highest acuity
region, which gradually declines toward the field of view's periphery. However,
the majority of existing object localization methods rely on images acquired by
image sensors with space-invariant resolution, ignoring biological attention
mechanisms.
As a region of interest pooling, this study employs a fixation prediction
model that emulates human objective-guided attention of searching for a given
class in an image. The foveated pictures at each fixation point are then
classified to determine whether the target is present or absent in the scene.
Throughout this two-stage pipeline method, we investigate the varying results
obtained by utilizing high-level or panoptic features and provide a
ground-truth label function for fixation sequences that is smoother,
considering in a better way the spatial structure of the problem.
Finally, we present a novel dual task model capable of performing fixation
prediction and detection simultaneously, allowing knowledge transfer between
the two tasks. We conclude that, due to the complementary nature of both tasks,
the training process benefited from the sharing of knowledge, resulting in an
improvement in performance when compared to the previous approach's baseline
scores.
Related papers
- Foveation in the Era of Deep Learning [6.602118206533142]
We introduce an end-to-end differentiable foveated active vision architecture that leverages a graph convolutional network to process foveated images.
Our model learns to iteratively attend to regions of the image relevant for classification.
We find that our model outperforms a state-of-the-art CNN and foveated vision architectures of comparable parameters and a given pixel or budget.
arXiv Detail & Related papers (2023-12-03T16:48:09Z) - Active Gaze Control for Foveal Scene Exploration [124.11737060344052]
We propose a methodology to emulate how humans and robots with foveal cameras would explore a scene.
The proposed method achieves an increase in detection F1-score of 2-3 percentage points for the same number of gaze shifts.
arXiv Detail & Related papers (2022-08-24T14:59:28Z) - Single Stage Virtual Try-on via Deformable Attention Flows [51.70606454288168]
Virtual try-on aims to generate a photo-realistic fitting result given an in-shop garment and a reference person image.
We develop a novel Deformable Attention Flow (DAFlow) which applies the deformable attention scheme to multi-flow estimation.
Our proposed method achieves state-of-the-art performance both qualitatively and quantitatively.
arXiv Detail & Related papers (2022-07-19T10:01:31Z) - Mix-up Self-Supervised Learning for Contrast-agnostic Applications [33.807005669824136]
We present the first mix-up self-supervised learning framework for contrast-agnostic applications.
We address the low variance across images based on cross-domain mix-up and build the pretext task based on image reconstruction and transparency prediction.
arXiv Detail & Related papers (2022-04-02T16:58:36Z) - Hybrid Optimized Deep Convolution Neural Network based Learning Model
for Object Detection [0.0]
Object identification is one of the most fundamental and difficult issues in computer vision.
In recent years, deep learning-based object detection techniques have grabbed the public's interest.
In this study, a unique deep learning classification technique is used to create an autonomous object detecting system.
The suggested framework has a detection accuracy of 0.9864, which is greater than current techniques.
arXiv Detail & Related papers (2022-03-02T04:39:37Z) - Distribution Alignment: A Unified Framework for Long-tail Visual
Recognition [52.36728157779307]
We propose a unified distribution alignment strategy for long-tail visual recognition.
We then introduce a generalized re-weight method in the two-stage learning to balance the class prior.
Our approach achieves the state-of-the-art results across all four recognition tasks with a simple and unified framework.
arXiv Detail & Related papers (2021-03-30T14:09:53Z) - Instance Localization for Self-supervised Detection Pretraining [68.24102560821623]
We propose a new self-supervised pretext task, called instance localization.
We show that integration of bounding boxes into pretraining promotes better task alignment and architecture alignment for transfer learning.
Experimental results demonstrate that our approach yields state-of-the-art transfer learning results for object detection.
arXiv Detail & Related papers (2021-02-16T17:58:57Z) - Rethinking of the Image Salient Object Detection: Object-level Semantic
Saliency Re-ranking First, Pixel-wise Saliency Refinement Latter [62.26677215668959]
We propose a lightweight, weakly supervised deep network to coarsely locate semantically salient regions.
We then fuse multiple off-the-shelf deep models on these semantically salient regions as the pixel-wise saliency refinement.
Our method is simple yet effective, which is the first attempt to consider the salient object detection mainly as an object-level semantic re-ranking problem.
arXiv Detail & Related papers (2020-08-10T07:12:43Z) - Unsupervised Learning of Landmarks based on Inter-Intra Subject
Consistencies [72.67344725725961]
We present a novel unsupervised learning approach to image landmark discovery by incorporating the inter-subject landmark consistencies on facial images.
This is achieved via an inter-subject mapping module that transforms original subject landmarks based on an auxiliary subject-related structure.
To recover from the transformed images back to the original subject, the landmark detector is forced to learn spatial locations that contain the consistent semantic meanings both for the paired intra-subject images and between the paired inter-subject images.
arXiv Detail & Related papers (2020-04-16T20:38:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.