A Deep Learning Approach Towards Generating High-fidelity Diverse
Synthetic Battery Datasets
- URL: http://arxiv.org/abs/2304.06043v1
- Date: Sun, 9 Apr 2023 05:41:21 GMT
- Title: A Deep Learning Approach Towards Generating High-fidelity Diverse
Synthetic Battery Datasets
- Authors: Janamejaya Channegowda, Vageesh Maiya, Chaitanya Lingaraj
- Abstract summary: We introduce few Deep Learning-based methods to synthesize high-fidelity battery datasets.
These augmented synthetic datasets will help battery researchers build better estimation models.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent surge in the number of Electric Vehicles have created a need to
develop inexpensive energy-dense Battery Storage Systems. Many countries across
the planet have put in place concrete measures to reduce and subsequently limit
the number of vehicles powered by fossil fuels. Lithium-ion based batteries are
presently dominating the electric automotive sector. Energy research efforts
are also focussed on accurate computation of State-of-Charge of such batteries
to provide reliable vehicle range estimates. Although such estimation
algorithms provide precise estimates, all such techniques available in
literature presume availability of superior quality battery datasets. In
reality, gaining access to proprietary battery usage datasets is very tough for
battery scientists. Moreover, open access datasets lack the diverse battery
charge/discharge patterns needed to build generalized models. Curating battery
measurement data is time consuming and needs expensive equipment. To surmount
such limited data scenarios, we introduce few Deep Learning-based methods to
synthesize high-fidelity battery datasets, these augmented synthetic datasets
will help battery researchers build better estimation models in the presence of
limited data. We have released the code and dataset used in the present
approach to generate synthetic data. The battery data augmentation techniques
introduced here will alleviate limited battery dataset challenges.
Related papers
- Generating Comprehensive Lithium Battery Charging Data with Generative AI [24.469319419012745]
This study introduces the End of Life (EOL) and Equivalent Cycle Life (ECL) as conditions for generative AI models.
By integrating an embedding layer into the CVAE model, we developed the Refined Conditional Variational Autoencoder (RCVAE)
Through preprocessing data into a quasi-video format, our study achieves an integrated synthesis of electrochemical data, including voltage, current, temperature, and charging capacity.
This method provides users with a comprehensive electrochemical dataset, pioneering a new research domain for the artificial synthesis of lithium battery data.
arXiv Detail & Related papers (2024-04-11T09:08:45Z) - BatSort: Enhanced Battery Classification with Transfer Learning for Battery Sorting and Recycling [42.453194049264646]
We introduce a machine learning-based approach for battery-type classification and address the problem of data scarcity for the application.
We propose BatSort which applies transfer learning to utilize the existing knowledge optimized with large-scale datasets.
We conducted an experimental study and the results show that BatSort can achieve outstanding accuracy of 92.1% on average and up to 96.2%.
arXiv Detail & Related papers (2024-04-08T18:05:24Z) - A Comprehensive Survey of Dataset Distillation [73.15482472726555]
It has become challenging to handle the unlimited growth of data with limited computing power.
Deep learning technology has developed unprecedentedly in the last decade.
This paper provides a holistic understanding of dataset distillation from multiple aspects.
arXiv Detail & Related papers (2023-01-13T15:11:38Z) - Stress-Testing LiDAR Registration [52.24383388306149]
We propose a method for selecting balanced registration sets, which are challenging sets of frame-pairs from LiDAR datasets.
Perhaps unexpectedly, we find that the fastest and simultaneously most accurate approach is a version of advanced RANSAC.
arXiv Detail & Related papers (2022-04-16T05:10:55Z) - Battery Cloud with Advanced Algorithms [1.7205106391379026]
A Battery Cloud or cloud battery management system leverages the cloud computational power and data storage to improve battery safety, performance, and economy.
This work will present the Battery Cloud that collects measured battery data from electric vehicles and energy storage systems.
arXiv Detail & Related papers (2022-03-07T21:56:17Z) - EVBattery: A Large-Scale Electric Vehicle Dataset for Battery Health and
Capacity Estimation [15.169440280225647]
Electric vehicles (EVs) play an important role in reducing carbon emissions.
As EV adoption accelerates, safety issues caused by EV batteries have become an important research topic.
In order to benchmark and develop data-driven methods for this task, we introduce a large and comprehensive dataset of EV batteries.
Our dataset is the first large-scale public dataset on real-world battery data, as existing data either include only several vehicles or is collected in the lab environment.
arXiv Detail & Related papers (2022-01-28T10:06:39Z) - Data Driven Prediction of Battery Cycle Life Before Capacity Degradation [0.0]
This paper utilizes the data and methods implemented by Kristen A. Severson, et al, to explore the methodologies that the research team used.
The fundamental effort is to find out if machine learning techniques may be trained to use early life cycle data in order to accurately predict battery capacity.
arXiv Detail & Related papers (2021-10-19T01:35:12Z) - Overcoming limited battery data challenges: A coupled neural network
approach [0.0]
We propose a novel method of time-series battery data augmentation using deep neural networks.
One model produces battery charging profiles, and another produces battery discharging profiles.
Results show the efficacy of this approach to solve the challenges of limited battery data.
arXiv Detail & Related papers (2021-10-05T16:17:19Z) - Optimizing a domestic battery and solar photovoltaic system with deep
reinforcement learning [69.68068088508505]
A lowering in the cost of batteries and solar PV systems has led to a high uptake of solar battery home systems.
In this work, we use the deep deterministic policy algorithm to optimise the charging and discharging behaviour of a battery within such a system.
arXiv Detail & Related papers (2021-09-10T10:59:14Z) - State-of-Charge Estimation of a Li-Ion Battery using Deep Forward Neural
Networks [68.8204255655161]
We build a Deep Forward Network for a lithium-ion battery and its performance assessment.
The contribution of this work is to present a methodology of building a Deep Forward Network for a lithium-ion battery and its performance assessment.
arXiv Detail & Related papers (2020-09-20T23:47:11Z) - Universal Battery Performance and Degradation Model for Electric
Aircraft [52.77024349608834]
Design, analysis, and operation of electric vertical takeoff and landing aircraft (eVTOLs) requires fast and accurate prediction of Li-ion battery performance.
We generate a battery performance and thermal behavior dataset specific to eVTOL duty cycles.
We use this dataset to develop a battery performance and degradation model (Cellfit) which employs physics-informed machine learning.
arXiv Detail & Related papers (2020-07-06T16:10:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.