Detection of Fake Generated Scientific Abstracts
- URL: http://arxiv.org/abs/2304.06148v1
- Date: Wed, 12 Apr 2023 20:20:22 GMT
- Title: Detection of Fake Generated Scientific Abstracts
- Authors: Panagiotis C. Theocharopoulos, Panagiotis Anagnostou, Anastasia
Tsoukala, Spiros V. Georgakopoulos, Sotiris K. Tasoulis and Vassilis P.
Plagianakos
- Abstract summary: The academic community has expressed concerns regarding the difficulty of discriminating between what is real and what is artificially generated.
In this study, we utilize the GPT-3 model to generate scientific paper abstracts through Artificial Intelligence.
We explore various text representation methods when combined with Machine Learning models with the aim of identifying machine-written text.
- Score: 0.9525711971667679
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The widespread adoption of Large Language Models and publicly available
ChatGPT has marked a significant turning point in the integration of Artificial
Intelligence into people's everyday lives. The academic community has taken
notice of these technological advancements and has expressed concerns regarding
the difficulty of discriminating between what is real and what is artificially
generated. Thus, researchers have been working on developing effective systems
to identify machine-generated text. In this study, we utilize the GPT-3 model
to generate scientific paper abstracts through Artificial Intelligence and
explore various text representation methods when combined with Machine Learning
models with the aim of identifying machine-written text. We analyze the models'
performance and address several research questions that rise during the
analysis of the results. By conducting this research, we shed light on the
capabilities and limitations of Artificial Intelligence generated text.
Related papers
- Detecting Machine-Generated Long-Form Content with Latent-Space Variables [54.07946647012579]
Existing zero-shot detectors primarily focus on token-level distributions, which are vulnerable to real-world domain shifts.
We propose a more robust method that incorporates abstract elements, such as event transitions, as key deciding factors to detect machine versus human texts.
arXiv Detail & Related papers (2024-10-04T18:42:09Z) - Detecting AI-Generated Text: Factors Influencing Detectability with Current Methods [13.14749943120523]
Knowing whether a text was produced by human or artificial intelligence (AI) is important to determining its trustworthiness.
State-of-the art approaches to AIGT detection include watermarking, statistical and stylistic analysis, and machine learning classification.
We aim to provide insight into the salient factors that combine to determine how "detectable" AIGT text is under different scenarios.
arXiv Detail & Related papers (2024-06-21T18:31:49Z) - Generative Artificial Intelligence: A Systematic Review and Applications [7.729155237285151]
This paper documents the systematic review and analysis of recent advancements and techniques in Generative AI.
The major impact that generative AI has made to date, has been in language generation with the development of large language models.
The paper ends with a discussion of Responsible AI principles, and the necessary ethical considerations for the sustainability and growth of these generative models.
arXiv Detail & Related papers (2024-05-17T18:03:59Z) - Generative AI in Writing Research Papers: A New Type of Algorithmic Bias
and Uncertainty in Scholarly Work [0.38850145898707145]
Large language models (LLMs) and generative AI tools present challenges in identifying and addressing biases.
generative AI tools are susceptible to goal misgeneralization, hallucinations, and adversarial attacks such as red teaming prompts.
We find that incorporating generative AI in the process of writing research manuscripts introduces a new type of context-induced algorithmic bias.
arXiv Detail & Related papers (2023-12-04T04:05:04Z) - Towards Possibilities & Impossibilities of AI-generated Text Detection:
A Survey [97.33926242130732]
Large Language Models (LLMs) have revolutionized the domain of natural language processing (NLP) with remarkable capabilities of generating human-like text responses.
Despite these advancements, several works in the existing literature have raised serious concerns about the potential misuse of LLMs.
To address these concerns, a consensus among the research community is to develop algorithmic solutions to detect AI-generated text.
arXiv Detail & Related papers (2023-10-23T18:11:32Z) - Large Language Models for Scientific Synthesis, Inference and
Explanation [56.41963802804953]
We show how large language models can perform scientific synthesis, inference, and explanation.
We show that the large language model can augment this "knowledge" by synthesizing from the scientific literature.
This approach has the further advantage that the large language model can explain the machine learning system's predictions.
arXiv Detail & Related papers (2023-10-12T02:17:59Z) - The Imitation Game: Detecting Human and AI-Generated Texts in the Era of
ChatGPT and BARD [3.2228025627337864]
We introduce a novel dataset of human-written and AI-generated texts in different genres.
We employ several machine learning models to classify the texts.
Results demonstrate the efficacy of these models in discerning between human and AI-generated text.
arXiv Detail & Related papers (2023-07-22T21:00:14Z) - The Age of Synthetic Realities: Challenges and Opportunities [85.058932103181]
We highlight the crucial need for the development of forensic techniques capable of identifying harmful synthetic creations and distinguishing them from reality.
Our focus extends to various forms of media, such as images, videos, audio, and text, as we examine how synthetic realities are crafted and explore approaches to detecting these malicious creations.
This study is of paramount importance due to the rapid progress of AI generative techniques and their impact on the fundamental principles of Forensic Science.
arXiv Detail & Related papers (2023-06-09T15:55:10Z) - Emergent autonomous scientific research capabilities of large language
models [0.0]
Transformer-based large language models are rapidly advancing in the field of machine learning research.
We present an Intelligent Agent system that combines multiple large language models for autonomous design, planning, and execution of scientific experiments.
arXiv Detail & Related papers (2023-04-11T16:50:17Z) - On the Possibilities of AI-Generated Text Detection [76.55825911221434]
We argue that as machine-generated text approximates human-like quality, the sample size needed for detection bounds increases.
We test various state-of-the-art text generators, including GPT-2, GPT-3.5-Turbo, Llama, Llama-2-13B-Chat-HF, and Llama-2-70B-Chat-HF, against detectors, including oBERTa-Large/Base-Detector, GPTZero.
arXiv Detail & Related papers (2023-04-10T17:47:39Z) - Human-Robot Collaboration and Machine Learning: A Systematic Review of
Recent Research [69.48907856390834]
Human-robot collaboration (HRC) is the approach that explores the interaction between a human and a robot.
This paper proposes a thorough literature review of the use of machine learning techniques in the context of HRC.
arXiv Detail & Related papers (2021-10-14T15:14:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.