AI-Generated Content (AIGC): A Survey
- URL: http://arxiv.org/abs/2304.06632v1
- Date: Sun, 26 Mar 2023 02:22:12 GMT
- Title: AI-Generated Content (AIGC): A Survey
- Authors: Jiayang Wu, Wensheng Gan, Zefeng Chen, Shicheng Wan, Hong Lin
- Abstract summary: artificial intelligence-generated content (AIGC) has emerged to address the challenges of digital intelligence in the digital economy.
This paper provides an extensive overview of AIGC, covering its definition, essential conditions, cutting-edge capabilities, and advanced features.
- Score: 4.108847841902397
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: To address the challenges of digital intelligence in the digital economy,
artificial intelligence-generated content (AIGC) has emerged. AIGC uses
artificial intelligence to assist or replace manual content generation by
generating content based on user-inputted keywords or requirements. The
development of large model algorithms has significantly strengthened the
capabilities of AIGC, which makes AIGC products a promising generative tool and
adds convenience to our lives. As an upstream technology, AIGC has unlimited
potential to support different downstream applications. It is important to
analyze AIGC's current capabilities and shortcomings to understand how it can
be best utilized in future applications. Therefore, this paper provides an
extensive overview of AIGC, covering its definition, essential conditions,
cutting-edge capabilities, and advanced features. Moreover, it discusses the
benefits of large-scale pre-trained models and the industrial chain of AIGC.
Furthermore, the article explores the distinctions between auxiliary generation
and automatic generation within AIGC, providing examples of text generation.
The paper also examines the potential integration of AIGC with the Metaverse.
Lastly, the article highlights existing issues and suggests some future
directions for application.
Related papers
- Generative AI in Health Economics and Outcomes Research: A Taxonomy of Key Definitions and Emerging Applications, an ISPOR Working Group Report [12.204470166456561]
Generative AI shows significant potential in health economics and outcomes research (HEOR)
Generative AI shows significant potential in HEOR, enhancing efficiency, productivity, and offering novel solutions to complex challenges.
Foundation models are promising in automating complex tasks, though challenges remain in scientific reliability, bias, interpretability, and workflow integration.
arXiv Detail & Related papers (2024-10-26T15:42:50Z) - Generative AI Agent for Next-Generation MIMO Design: Fundamentals, Challenges, and Vision [76.4345564864002]
Next-generation multiple input multiple output (MIMO) is expected to be intelligent and scalable.
We propose the concept of the generative AI agent, which is capable of generating tailored and specialized contents.
We present two compelling case studies that demonstrate the effectiveness of leveraging the generative AI agent for performance analysis.
arXiv Detail & Related papers (2024-04-13T02:39:36Z) - Semantic Communications for Artificial Intelligence Generated Content
(AIGC) Toward Effective Content Creation [75.73229320559996]
This paper develops a conceptual model for the integration of AIGC and SemCom.
A novel framework that employs AIGC technology is proposed as an encoder and decoder for semantic information.
The framework can adapt to different types of content generated, the required quality, and the semantic information utilized.
arXiv Detail & Related papers (2023-08-09T13:17:21Z) - A Survey on ChatGPT: AI-Generated Contents, Challenges, and Solutions [19.50785795365068]
AIGC uses generative large AI algorithms to assist humans in creating massive, high-quality, and human-like content at a faster pace and lower cost.
This paper presents an in-depth survey of working principles, security and privacy threats, state-of-the-art solutions, and future challenges of the AIGC paradigm.
arXiv Detail & Related papers (2023-05-25T15:09:11Z) - Guiding AI-Generated Digital Content with Wireless Perception [69.51950037942518]
We introduce an integration of wireless perception with AI-generated content (AIGC) to improve the quality of digital content production.
The framework employs a novel multi-scale perception technology to read user's posture, which is difficult to describe accurately in words, and transmits it to the AIGC model as skeleton images.
Since the production process imposes the user's posture as a constraint on the AIGC model, it makes the generated content more aligned with the user's requirements.
arXiv Detail & Related papers (2023-03-26T04:39:03Z) - A Complete Survey on Generative AI (AIGC): Is ChatGPT from GPT-4 to
GPT-5 All You Need? [112.12974778019304]
generative AI (AIGC, a.k.a AI-generated content) has made headlines everywhere because of its ability to analyze and create text, images, and beyond.
In the era of AI transitioning from pure analysis to creation, it is worth noting that ChatGPT, with its most recent language model GPT-4, is just a tool out of numerous AIGC tasks.
This work focuses on the technological development of various AIGC tasks based on their output type, including text, images, videos, 3D content, etc.
arXiv Detail & Related papers (2023-03-21T10:09:47Z) - A Comprehensive Survey of AI-Generated Content (AIGC): A History of
Generative AI from GAN to ChatGPT [63.58711128819828]
ChatGPT and other Generative AI (GAI) techniques belong to the category of Artificial Intelligence Generated Content (AIGC)
The goal of AIGC is to make the content creation process more efficient and accessible, allowing for the production of high-quality content at a faster pace.
arXiv Detail & Related papers (2023-03-07T20:36:13Z) - Enabling AI-Generated Content (AIGC) Services in Wireless Edge Networks [68.00382171900975]
In wireless edge networks, the transmission of incorrectly generated content may unnecessarily consume network resources.
We present the AIGC-as-a-service concept and discuss the challenges in deploying A at the edge networks.
We propose a deep reinforcement learning-enabled algorithm for optimal ASP selection.
arXiv Detail & Related papers (2023-01-09T09:30:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.