Improving novelty detection with generative adversarial networks on hand
gesture data
- URL: http://arxiv.org/abs/2304.06696v1
- Date: Thu, 13 Apr 2023 17:50:15 GMT
- Title: Improving novelty detection with generative adversarial networks on hand
gesture data
- Authors: Miguel Sim\~ao, Pedro Neto, Olivier Gibaru
- Abstract summary: We propose a novel way of solving the issue of classification of out-of-vocabulary gestures using Artificial Neural Networks (ANNs) trained in the Generative Adversarial Network (GAN) framework.
A generative model augments the data set in an online fashion with new samples and target vectors, while a discriminative model determines the class of the samples.
- Score: 1.3750624267664153
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose a novel way of solving the issue of classification of
out-of-vocabulary gestures using Artificial Neural Networks (ANNs) trained in
the Generative Adversarial Network (GAN) framework. A generative model augments
the data set in an online fashion with new samples and stochastic target
vectors, while a discriminative model determines the class of the samples. The
approach was evaluated on the UC2017 SG and UC2018 DualMyo data sets. The
generative models performance was measured with a distance metric between
generated and real samples. The discriminative models were evaluated by their
accuracy on trained and novel classes. In terms of sample generation quality,
the GAN is significantly better than a random distribution (noise) in mean
distance, for all classes. In the classification tests, the baseline neural
network was not capable of identifying untrained gestures. When the proposed
methodology was implemented, we found that there is a trade-off between the
detection of trained and untrained gestures, with some trained samples being
mistaken as novelty. Nevertheless, a novelty detection accuracy of 95.4% or
90.2% (depending on the data set) was achieved with just 5% loss of accuracy on
trained classes.
Related papers
- Source-Free Test-Time Adaptation For Online Surface-Defect Detection [29.69030283193086]
We propose a novel test-time adaptation surface-defect detection approach.
It adapts pre-trained models to new domains and classes during inference.
Experiments demonstrate it outperforms state-of-the-art techniques.
arXiv Detail & Related papers (2024-08-18T14:24:05Z) - Dual Student Networks for Data-Free Model Stealing [79.67498803845059]
Two main challenges are estimating gradients of the target model without access to its parameters, and generating a diverse set of training samples.
We propose a Dual Student method where two students are symmetrically trained in order to provide the generator a criterion to generate samples that the two students disagree on.
We show that our new optimization framework provides more accurate gradient estimation of the target model and better accuracies on benchmark classification datasets.
arXiv Detail & Related papers (2023-09-18T18:11:31Z) - Intra-class Adaptive Augmentation with Neighbor Correction for Deep
Metric Learning [99.14132861655223]
We propose a novel intra-class adaptive augmentation (IAA) framework for deep metric learning.
We reasonably estimate intra-class variations for every class and generate adaptive synthetic samples to support hard samples mining.
Our method significantly improves and outperforms the state-of-the-art methods on retrieval performances by 3%-6%.
arXiv Detail & Related papers (2022-11-29T14:52:38Z) - Automatic Change-Point Detection in Time Series via Deep Learning [8.43086628139493]
We show how to automatically generate new offline detection methods based on training a neural network.
We present theory that quantifies the error rate for such an approach, and how it depends on the amount of training data.
Our method also shows strong results in detecting and localising changes in activity based on accelerometer data.
arXiv Detail & Related papers (2022-11-07T20:59:14Z) - Fake It Till You Make It: Near-Distribution Novelty Detection by
Score-Based Generative Models [54.182955830194445]
existing models either fail or face a dramatic drop under the so-called near-distribution" setting.
We propose to exploit a score-based generative model to produce synthetic near-distribution anomalous data.
Our method improves the near-distribution novelty detection by 6% and passes the state-of-the-art by 1% to 5% across nine novelty detection benchmarks.
arXiv Detail & Related papers (2022-05-28T02:02:53Z) - Novelty Detection via Contrastive Learning with Negative Data
Augmentation [34.39521195691397]
We introduce a novel generative network framework for novelty detection.
Our model has significant superiority over cutting-edge novelty detectors.
Our model is more stable for training in a non-adversarial manner, compared to other adversarial based novelty detection methods.
arXiv Detail & Related papers (2021-06-18T07:26:15Z) - Unsupervised neural adaptation model based on optimal transport for
spoken language identification [54.96267179988487]
Due to the mismatch of statistical distributions of acoustic speech between training and testing sets, the performance of spoken language identification (SLID) could be drastically degraded.
We propose an unsupervised neural adaptation model to deal with the distribution mismatch problem for SLID.
arXiv Detail & Related papers (2020-12-24T07:37:19Z) - Understanding Classifier Mistakes with Generative Models [88.20470690631372]
Deep neural networks are effective on supervised learning tasks, but have been shown to be brittle.
In this paper, we leverage generative models to identify and characterize instances where classifiers fail to generalize.
Our approach is agnostic to class labels from the training set which makes it applicable to models trained in a semi-supervised way.
arXiv Detail & Related papers (2020-10-05T22:13:21Z) - Uncertainty-Aware Deep Classifiers using Generative Models [7.486679152591502]
Deep neural networks are often ignorant about what they do not know and overconfident when they make uninformed predictions.
Some recent approaches quantify uncertainty directly by training the model to output high uncertainty for the data samples close to class boundaries or from the outside of the training distribution.
We develop a novel neural network model that is able to express both aleatoric and epistemic uncertainty to distinguish decision boundary and out-of-distribution regions.
arXiv Detail & Related papers (2020-06-07T15:38:35Z) - Imbalanced Data Learning by Minority Class Augmentation using Capsule
Adversarial Networks [31.073558420480964]
We propose a method to restore the balance in imbalanced images, by coalescing two concurrent methods.
In our model, generative and discriminative networks play a novel competitive game.
The coalescing of capsule-GAN is effective at recognizing highly overlapping classes with much fewer parameters compared with the convolutional-GAN.
arXiv Detail & Related papers (2020-04-05T12:36:06Z) - Uncertainty Estimation Using a Single Deep Deterministic Neural Network [66.26231423824089]
We propose a method for training a deterministic deep model that can find and reject out of distribution data points at test time with a single forward pass.
We scale training in these with a novel loss function and centroid updating scheme and match the accuracy of softmax models.
arXiv Detail & Related papers (2020-03-04T12:27:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.