Label Dependencies-aware Set Prediction Networks for Multi-label Text Classification
- URL: http://arxiv.org/abs/2304.07022v2
- Date: Thu, 14 Mar 2024 02:56:32 GMT
- Title: Label Dependencies-aware Set Prediction Networks for Multi-label Text Classification
- Authors: Du Xinkai, Han Quanjie, Sun Yalin, Lv Chao, Sun Maosong,
- Abstract summary: We leverage Graph Convolutional Networks and construct an adjacency matrix based on the statistical relations between labels.
We enhance recall ability by applying the Bhattacharyya distance to the output distributions of the set prediction networks.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multi-label text classification involves extracting all relevant labels from a sentence. Given the unordered nature of these labels, we propose approaching the problem as a set prediction task. To address the correlation between labels, we leverage Graph Convolutional Networks and construct an adjacency matrix based on the statistical relations between labels. Additionally, we enhance recall ability by applying the Bhattacharyya distance to the output distributions of the set prediction networks. We evaluate the effectiveness of our approach on two multi-label datasets and demonstrate its superiority over previous baselines through experimental results.
Related papers
- Reducing Labeling Costs in Sentiment Analysis via Semi-Supervised Learning [0.0]
This study explores label propagation in semi-supervised learning.
We employ a transductive label propagation method based on the manifold assumption for text classification.
By extending labels based on cosine proximity within a nearest neighbor graph from network embeddings, we combine unlabeled data into supervised learning.
arXiv Detail & Related papers (2024-10-15T07:25:33Z) - Substituting Data Annotation with Balanced Updates and Collective Loss
in Multi-label Text Classification [19.592985329023733]
Multi-label text classification (MLTC) is the task of assigning multiple labels to a given text.
We study the MLTC problem in annotation-free and scarce-annotation settings in which the magnitude of available supervision signals is linear to the number of labels.
Our method follows three steps, (1) mapping input text into a set of preliminary label likelihoods by natural language inference using a pre-trained language model, (2) calculating a signed label dependency graph by label descriptions, and (3) updating the preliminary label likelihoods with message passing along the label dependency graph.
arXiv Detail & Related papers (2023-09-24T04:12:52Z) - Exploring Structured Semantic Prior for Multi Label Recognition with
Incomplete Labels [60.675714333081466]
Multi-label recognition (MLR) with incomplete labels is very challenging.
Recent works strive to explore the image-to-label correspondence in the vision-language model, ie, CLIP, to compensate for insufficient annotations.
We advocate remedying the deficiency of label supervision for the MLR with incomplete labels by deriving a structured semantic prior.
arXiv Detail & Related papers (2023-03-23T12:39:20Z) - Multi-label Classification with High-rank and High-order Label
Correlations [62.39748565407201]
Previous methods capture the high-order label correlations mainly by transforming the label matrix to a latent label space with low-rank matrix factorization.
We propose a simple yet effective method to depict the high-order label correlations explicitly, and at the same time maintain the high-rank of the label matrix.
Comparative studies over twelve benchmark data sets validate the effectiveness of the proposed algorithm in multi-label classification.
arXiv Detail & Related papers (2022-07-09T05:15:31Z) - Graph Attention Transformer Network for Multi-Label Image Classification [50.0297353509294]
We propose a general framework for multi-label image classification that can effectively mine complex inter-label relationships.
Our proposed methods can achieve state-of-the-art performance on three datasets.
arXiv Detail & Related papers (2022-03-08T12:39:05Z) - Why Propagate Alone? Parallel Use of Labels and Features on Graphs [42.01561812621306]
Graph neural networks (GNNs) and label propagation represent two interrelated modeling strategies designed to exploit graph structure in tasks such as node property prediction.
We show that a label trick can be reduced to an interpretable, deterministic training objective composed of two factors.
arXiv Detail & Related papers (2021-10-14T07:34:11Z) - Enhancing Label Correlation Feedback in Multi-Label Text Classification
via Multi-Task Learning [6.1538971100140145]
We introduce a novel approach with multi-task learning to enhance label correlation feedback.
We propose two auxiliary label co-occurrence prediction tasks to enhance label correlation learning.
arXiv Detail & Related papers (2021-06-06T12:26:14Z) - A Study on the Autoregressive and non-Autoregressive Multi-label
Learning [77.11075863067131]
We propose a self-attention based variational encoder-model to extract the label-label and label-feature dependencies jointly.
Our model can therefore be used to predict all labels in parallel while still including both label-label and label-feature dependencies.
arXiv Detail & Related papers (2020-12-03T05:41:44Z) - MatchGAN: A Self-Supervised Semi-Supervised Conditional Generative
Adversarial Network [51.84251358009803]
We present a novel self-supervised learning approach for conditional generative adversarial networks (GANs) under a semi-supervised setting.
We perform augmentation by randomly sampling sensible labels from the label space of the few labelled examples available.
Our method surpasses the baseline with only 20% of the labelled examples used to train the baseline.
arXiv Detail & Related papers (2020-06-11T17:14:55Z) - Interaction Matching for Long-Tail Multi-Label Classification [57.262792333593644]
We present an elegant and effective approach for addressing limitations in existing multi-label classification models.
By performing soft n-gram interaction matching, we match labels with natural language descriptions.
arXiv Detail & Related papers (2020-05-18T15:27:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.