Thermal Spacetime, Part I: Relativistic Bohmian Mechanics
- URL: http://arxiv.org/abs/2304.08392v2
- Date: Mon, 22 May 2023 16:45:34 GMT
- Title: Thermal Spacetime, Part I: Relativistic Bohmian Mechanics
- Authors: Gerald Kaiser
- Abstract summary: Positive-energy solutions of the Klein-Gordon equation form a Hilbert space of holomorphic functions on the future tube.
This domain is interpreted as an extended phase space for the associated classical particle, the extra dimensions being the time and a new variable related to the inverse equilibrium temperature in an associated canonical ensemble.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Positive-energy solutions of the Klein-Gordon equation form a Hilbert space
of holomorphic functions on the future tube. This domain is interpreted as an
extended phase space for the associated classical particle, the extra
dimensions being the time and a new variable related to the inverse equilibrium
temperature in an associated canonical ensemble. This gives a compelling
formulation of relativistic Bohmian mechanics where the "hidden variables" are
simply the classical trajectories of the particle in phase space. Interactions
may be included through "holomorphic gauge theory."
Related papers
- Klein-Gordon theory in noncommutative phase space [0.0]
We extend the three-dimensional noncommutative relations of the positions and momenta operators to those in the four dimension.
We endow the noncommutative parameters associated with the Planck constant, Planck length and cosmological constant.
As an analog with the electromagnetic gauge potential, the noncommutative effect can be interpreted as an effective gauge field.
arXiv Detail & Related papers (2024-03-14T03:43:04Z) - Ultracold Neutrons in the Low Curvature Limit: Remarks on the
post-Newtonian effects [49.1574468325115]
We apply a perturbative scheme to derive the non-relativistic Schr"odinger equation in curved spacetime.
We calculate the next-to-leading order corrections to the neutron's energy spectrum.
While the current precision for observations of ultracold neutrons may not yet enable to probe them, they could still be relevant in the future or in alternative circumstances.
arXiv Detail & Related papers (2023-12-30T16:45:56Z) - Tachyons in "momentum-space'' representation [0.0]
The momentum space associated with "tachyonic particles" is rather intricate, departing from the ordinary dual to Minkowski space directly parametrized by space-time translations of the Poincar'e group.
Although described by the constants of motion (Noether invariants) associated with space-time translations, they depend non-trivially on the parameters of the rotation subgroup.
After that, the theory becomes consistent and could shed new light on some special physical situations like inflation or traveling inside a black hole.
arXiv Detail & Related papers (2023-12-27T11:01:34Z) - Spacetime quantum and classical mechanics with dynamical foliation [0.0]
We extend the time choice of the Legendre transform to a dynamical variable.
A canonical-like quantization of the formalism is then presented in which the fields satisfy spacetime commutation relations.
The problem of establishing a correspondence between the new noncausal framework and conventional QM is solved through a generalization of spacelike correlators to spacetime.
arXiv Detail & Related papers (2023-11-11T05:51:21Z) - Looking for Carroll particles in two time spacetime [55.2480439325792]
Carroll particles with a non-vanishing value of energy are described in the framework of two time physics.
We construct the quantum theory of such a particle using an unexpected correspondence between our parametrization and that obtained by Bars for the hydrogen atom in 1999.
arXiv Detail & Related papers (2023-10-29T15:51:41Z) - Exotic quantum liquids in Bose-Hubbard models with spatially-modulated
symmetries [0.0]
We investigate the effect that spatially modulated continuous conserved quantities can have on quantum ground states.
We show that such systems feature a non-trivial Hilbert space fragmentation for momenta incommensurate with the lattice.
We conjecture that a Berezinskii-Kosterlitz-Thouless-type transition is driven by the unbinding of vortices along the temporal direction.
arXiv Detail & Related papers (2023-07-17T18:14:54Z) - Continuous percolation in a Hilbert space for a large system of qubits [58.720142291102135]
The percolation transition is defined through the appearance of the infinite cluster.
We show that the exponentially increasing dimensionality of the Hilbert space makes its covering by finite-size hyperspheres inefficient.
Our approach to the percolation transition in compact metric spaces may prove useful for its rigorous treatment in other contexts.
arXiv Detail & Related papers (2022-10-15T13:53:21Z) - Quantum theory, thermal gradients and the curved Euclidean space [0.0]
We develop an equivalence between the spatial variation of temperature in a thermal bath and the curvature of the Euclidean space.
The equivalence is substantiated by analyzing the Polyakov loop, the partition function and the periodicity of the correlation function.
The Dirac equation for an external Dirac spinor, traversing in a thermal bath with spatial thermal gradients, is solved in the curved Euclidean space.
arXiv Detail & Related papers (2022-06-27T14:10:09Z) - Wave Functional of the Universe and Time [62.997667081978825]
A version of the quantum theory of gravity based on the concept of the wave functional of the universe is proposed.
The history of the evolution of the universe is described in terms of coordinate time together with arbitrary lapse and shift functions.
arXiv Detail & Related papers (2021-10-18T09:41:59Z) - Analog cosmological reheating in an ultracold Bose gas [58.720142291102135]
We quantum-simulate the reheating-like dynamics of a generic cosmological single-field model in an ultracold Bose gas.
Expanding spacetime as well as the background oscillating inflaton field are mimicked in the non-relativistic limit.
The proposed experiment has the potential of exploring the evolution up to late times even beyond the weak coupling regime.
arXiv Detail & Related papers (2020-08-05T18:00:26Z) - Feynman Propagator for a System of Interacting Scalar Particles in the
Fokker Theory [62.997667081978825]
The functional integral on the generalized phase space is defined as the initial one in quantum theory.
The measure of integration in the generalized configuration space of world particle lines is determined.
A modification of the propagator is proposed, in which the role of independent time parameters is taken by the time coordinates of the particles in Minkowski space.
arXiv Detail & Related papers (2020-02-10T09:09:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.