Do humans and machines have the same eyes? Human-machine perceptual
differences on image classification
- URL: http://arxiv.org/abs/2304.08733v1
- Date: Tue, 18 Apr 2023 05:09:07 GMT
- Title: Do humans and machines have the same eyes? Human-machine perceptual
differences on image classification
- Authors: Minghao Liu, Jiaheng Wei, Yang Liu, James Davis
- Abstract summary: Trained computer vision models are assumed to solve vision tasks by imitating human behavior learned from training labels.
Our study first quantifies and analyzes the statistical distributions of mistakes from the two sources.
We empirically demonstrate a post-hoc human-machine collaboration that outperforms humans or machines alone.
- Score: 8.474744196892722
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Trained computer vision models are assumed to solve vision tasks by imitating
human behavior learned from training labels. Most efforts in recent vision
research focus on measuring the model task performance using standardized
benchmarks. Limited work has been done to understand the perceptual difference
between humans and machines. To fill this gap, our study first quantifies and
analyzes the statistical distributions of mistakes from the two sources. We
then explore human vs. machine expertise after ranking tasks by difficulty
levels. Even when humans and machines have similar overall accuracies, the
distribution of answers may vary. Leveraging the perceptual difference between
humans and machines, we empirically demonstrate a post-hoc human-machine
collaboration that outperforms humans or machines alone.
Related papers
- Unexploited Information Value in Human-AI Collaboration [23.353778024330165]
How to improve performance of a human-AI team is often not clear without knowing what particular information and strategies each agent employs.
We propose a model based in statistical decision theory to analyze human-AI collaboration.
arXiv Detail & Related papers (2024-11-03T01:34:45Z) - Rolling in the deep of cognitive and AI biases [1.556153237434314]
We argue that there is urgent need to understand AI as a sociotechnical system, inseparable from the conditions in which it is designed, developed and deployed.
We address this critical issue by following a radical new methodology under which human cognitive biases become core entities in our AI fairness overview.
We introduce a new mapping, which justifies the humans to AI biases and we detect relevant fairness intensities and inter-dependencies.
arXiv Detail & Related papers (2024-07-30T21:34:04Z) - Human-Modeling in Sequential Decision-Making: An Analysis through the Lens of Human-Aware AI [20.21053807133341]
We try to provide an account of what constitutes a human-aware AI system.
We see that human-aware AI is a design oriented paradigm, one that focuses on the need for modeling the humans it may interact with.
arXiv Detail & Related papers (2024-05-13T14:17:52Z) - Seeing is not always believing: Benchmarking Human and Model Perception
of AI-Generated Images [66.20578637253831]
There is a growing concern that the advancement of artificial intelligence (AI) technology may produce fake photos.
This study aims to comprehensively evaluate agents for distinguishing state-of-the-art AI-generated visual content.
arXiv Detail & Related papers (2023-04-25T17:51:59Z) - Human-AI Collaboration: The Effect of AI Delegation on Human Task
Performance and Task Satisfaction [0.0]
We show that task performance and task satisfaction improve through AI delegation.
We identify humans' increased levels of self-efficacy as the underlying mechanism for these improvements.
Our findings provide initial evidence that allowing AI models to take over more management responsibilities can be an effective form of human-AI collaboration.
arXiv Detail & Related papers (2023-03-16T11:02:46Z) - WenLan 2.0: Make AI Imagine via a Multimodal Foundation Model [74.4875156387271]
We develop a novel foundation model pre-trained with huge multimodal (visual and textual) data.
We show that state-of-the-art results can be obtained on a wide range of downstream tasks.
arXiv Detail & Related papers (2021-10-27T12:25:21Z) - Dissonance Between Human and Machine Understanding [16.32018730049208]
We present a large-scale crowdsourcing study that reveals and quantifies the dissonance between human and machine understanding.
Our findings have important implications on human-machine collaboration, considering that a long term goal in the field of artificial intelligence is to make machines capable of learning and reasoning like humans.
arXiv Detail & Related papers (2021-01-18T21:45:35Z) - Learning to Complement Humans [67.38348247794949]
A rising vision for AI in the open world centers on the development of systems that can complement humans for perceptual, diagnostic, and reasoning tasks.
We demonstrate how an end-to-end learning strategy can be harnessed to optimize the combined performance of human-machine teams.
arXiv Detail & Related papers (2020-05-01T20:00:23Z) - Is the Most Accurate AI the Best Teammate? Optimizing AI for Teamwork [54.309495231017344]
We argue that AI systems should be trained in a human-centered manner, directly optimized for team performance.
We study this proposal for a specific type of human-AI teaming, where the human overseer chooses to either accept the AI recommendation or solve the task themselves.
Our experiments with linear and non-linear models on real-world, high-stakes datasets show that the most accuracy AI may not lead to highest team performance.
arXiv Detail & Related papers (2020-04-27T19:06:28Z) - Joint Inference of States, Robot Knowledge, and Human (False-)Beliefs [90.20235972293801]
Aiming to understand how human (false-temporal)-belief-a core socio-cognitive ability unify-would affect human interactions with robots, this paper proposes to adopt a graphical model to the representation of object states, robot knowledge, and human (false-)beliefs.
An inference algorithm is derived to fuse individual pg from all robots across multi-views into a joint pg, which affords more effective reasoning inference capability to overcome the errors originated from a single view.
arXiv Detail & Related papers (2020-04-25T23:02:04Z) - Explainable Active Learning (XAL): An Empirical Study of How Local
Explanations Impact Annotator Experience [76.9910678786031]
We propose a novel paradigm of explainable active learning (XAL), by introducing techniques from the recently surging field of explainable AI (XAI) into an Active Learning setting.
Our study shows benefits of AI explanation as interfaces for machine teaching--supporting trust calibration and enabling rich forms of teaching feedback, and potential drawbacks--anchoring effect with the model judgment and cognitive workload.
arXiv Detail & Related papers (2020-01-24T22:52:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.