Orbital-Free Quasi-Density Functional Theory
- URL: http://arxiv.org/abs/2304.09056v3
- Date: Wed, 7 Jun 2023 19:38:41 GMT
- Title: Orbital-Free Quasi-Density Functional Theory
- Authors: Carlos L. Benavides-Riveros
- Abstract summary: Wigner functions are broadly used to probe non-classical effects in the macroscopic world.
We develop an orbital-free functional framework to compute the 1-body Wigner quasi-probability for both fermionic and bosonic systems.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Wigner functions are broadly used to probe non-classical effects in the
macroscopic world. Here we develop an orbital-free functional framework to
compute the 1-body Wigner quasi-probability for both fermionic and bosonic
systems. Since the key variable is a quasi-density, this theory is particularly
well suited to circumvent the problem of finding the Pauli potential or
approximating the kinetic energy in orbital-free density functional theory. As
proof of principle, we find that the universal functional for the building
block of optical lattices results from a translation, a contraction, and a
rotation of the corresponding functional of the 1-body reduced density matrix,
indicating a strong connection between these functional theories. Furthermore,
we relate the concepts of Wigner negativity and $v$-representability, and find
a manifold of ground states with negative Wigner functions.
Related papers
- Third quantization of open quantum systems: new dissipative symmetries
and connections to phase-space and Keldysh field theory formulations [77.34726150561087]
We reformulate the technique of third quantization in a way that explicitly connects all three methods.
We first show that our formulation reveals a fundamental dissipative symmetry present in all quadratic bosonic or fermionic Lindbladians.
For bosons, we then show that the Wigner function and the characteristic function can be thought of as ''wavefunctions'' of the density matrix.
arXiv Detail & Related papers (2023-02-27T18:56:40Z) - Refining and relating fundamentals of functional theory [0.0]
We explain why there exist six equivalent universal functionals, prove concise relations among them and conclude that the important notion of $v$-representability is relative to the scope and choice of variable.
For systems with time-reversal symmetry, we explain why there exist six equivalent universal functionals, prove concise relations among them and conclude that the important notion of $v$-representability is relative to the scope and choice of variable.
arXiv Detail & Related papers (2023-01-24T18:09:47Z) - Dilute neutron star matter from neural-network quantum states [58.720142291102135]
Low-density neutron matter is characterized by the formation of Cooper pairs and the onset of superfluidity.
We model this density regime by capitalizing on the expressivity of the hidden-nucleon neural-network quantum states combined with variational Monte Carlo and reconfiguration techniques.
arXiv Detail & Related papers (2022-12-08T17:55:25Z) - Deriving density-matrix functionals for excited states [0.0]
We first study the symmetric Hubbard dimer, constituting the building block of the Hubbard model, for which we execute the Levy-Lieb constrained search.
We demonstrate three conceptually different approaches for deriving the universal functional in a homogeneous Bose gas for arbitrary pair interaction in the Bogoliubov regime.
Remarkably, in both systems the gradient of the functional is found to diverge repulsively at the boundary of the functional's domain, extending the recently discovered Bose-Einstein condensation force to excited states.
arXiv Detail & Related papers (2022-09-29T17:03:08Z) - One-body reduced density-matrix functional theory for the canonical
ensemble [0.0]
Including temperature guarantees differentiability of the universal functional by occupying all states and additionally not fully occupying the states in a fermionic system.
We use convexity of the universal functional and invertibility of the potential-to-1RDM map to show that the subgradient contains only one element which is equivalent to differentiability.
arXiv Detail & Related papers (2022-09-23T15:50:43Z) - Real-Space, Real-Time Approach to Quantum-Electrodynamical
Time-Dependent Density Functional Theory [55.41644538483948]
The equations are solved by time propagating the wave function on a tensor product of a Fock-space and real-space grid.
Examples include the coupling strength and light frequency dependence of the energies, wave functions, optical absorption spectra, and Rabi splitting magnitudes in cavities.
arXiv Detail & Related papers (2022-09-01T18:49:51Z) - Sensitivity to the initial conditions of the Time-Dependent Density
Functional Theory [0.0]
Time-Dependent Density Functional Theory is mathematically formulated through non-linear coupled time-dependent 3-dimensional partial differential equations.
Our analysis, for a number of quantum superfluid many-body systems with a classical equivalent number of degrees of freedom, suggests that its maximum Lyapunov exponents are negligible for all practical purposes.
arXiv Detail & Related papers (2021-08-24T17:34:57Z) - Foundation of one-particle reduced density matrix functional theory for
excited states [0.0]
A reduced density matrix functional theory (RDMFT) has been proposed for calculating energies of selected eigenstates of interacting many-fermion systems.
Here, we develop a solid foundation for this so-called $boldsymbolw$-RDMFT and present the details of various derivations.
arXiv Detail & Related papers (2021-06-07T19:03:32Z) - Topological Quantum Gravity of the Ricci Flow [62.997667081978825]
We present a family of topological quantum gravity theories associated with the geometric theory of the Ricci flow.
First, we use BRST quantization to construct a "primitive" topological Lifshitz-type theory for only the spatial metric.
We extend the primitive theory by gauging foliation-preserving spacetime symmetries.
arXiv Detail & Related papers (2020-10-29T06:15:30Z) - Coupling-based Invertible Neural Networks Are Universal Diffeomorphism
Approximators [72.62940905965267]
Invertible neural networks based on coupling flows (CF-INNs) have various machine learning applications such as image synthesis and representation learning.
Are CF-INNs universal approximators for invertible functions?
We prove a general theorem to show the equivalence of the universality for certain diffeomorphism classes.
arXiv Detail & Related papers (2020-06-20T02:07:37Z) - Emergence of classical behavior in the early universe [68.8204255655161]
Three notions are often assumed to be essentially equivalent, representing different facets of the same phenomenon.
We analyze them in general Friedmann-Lemaitre- Robertson-Walker space-times through the lens of geometric structures on the classical phase space.
The analysis shows that: (i) inflation does not play an essential role; classical behavior can emerge much more generally; (ii) the three notions are conceptually distinct; classicality can emerge in one sense but not in another.
arXiv Detail & Related papers (2020-04-22T16:38:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.