Minimax Signal Detection in Sparse Additive Models
- URL: http://arxiv.org/abs/2304.09398v2
- Date: Wed, 02 Oct 2024 03:38:48 GMT
- Title: Minimax Signal Detection in Sparse Additive Models
- Authors: Subhodh Kotekal, Chao Gao,
- Abstract summary: We study the signal detection problem and establish the minimax separation rate for the detection of a sparse additive signal.
Unlike the estimation theory, the minimax separation rate reveals a nontrivial interaction between sparsity and the choice of function space.
adaptation to both sparsity and smoothness is studied in the setting of Sobolev space.
- Score: 12.513974268421954
- License:
- Abstract: Sparse additive models are an attractive choice in circumstances calling for modelling flexibility in the face of high dimensionality. We study the signal detection problem and establish the minimax separation rate for the detection of a sparse additive signal. Our result is nonasymptotic and applicable to the general case where the univariate component functions belong to a generic reproducing kernel Hilbert space. Unlike the estimation theory, the minimax separation rate reveals a nontrivial interaction between sparsity and the choice of function space. We also investigate adaptation to sparsity and establish an adaptive testing rate for a generic function space; adaptation is possible in some spaces while others impose an unavoidable cost. Finally, adaptation to both sparsity and smoothness is studied in the setting of Sobolev space, and we correct some existing claims in the literature.
Related papers
- Federated Nonparametric Hypothesis Testing with Differential Privacy Constraints: Optimal Rates and Adaptive Tests [5.3595271893779906]
Federated learning has attracted significant recent attention due to its applicability across a wide range of settings where data is collected and analyzed across disparate locations.
We study federated nonparametric goodness-of-fit testing in the white-noise-with-drift model under distributed differential privacy (DP) constraints.
arXiv Detail & Related papers (2024-06-10T19:25:19Z) - A Mean-Field Analysis of Neural Stochastic Gradient Descent-Ascent for Functional Minimax Optimization [90.87444114491116]
This paper studies minimax optimization problems defined over infinite-dimensional function classes of overparametricized two-layer neural networks.
We address (i) the convergence of the gradient descent-ascent algorithm and (ii) the representation learning of the neural networks.
Results show that the feature representation induced by the neural networks is allowed to deviate from the initial one by the magnitude of $O(alpha-1)$, measured in terms of the Wasserstein distance.
arXiv Detail & Related papers (2024-04-18T16:46:08Z) - Optimal function estimation with photonic quantum sensor networks [0.0]
We solve the problem of optimally measuring an analytic function of unknown local parameters each linearly coupled to a qubit sensor.
In particular, we derive lower bounds on the achievable mean square error in estimating a linear function of either local phase shifts or quadrature displacements.
For quadrature displacements, we extend bounds to the case of arbitrary linear functions.
arXiv Detail & Related papers (2024-01-29T19:00:00Z) - Domain Adaptive Synapse Detection with Weak Point Annotations [63.97144211520869]
We present AdaSyn, a framework for domain adaptive synapse detection with weak point annotations.
In the WASPSYN challenge at I SBI 2023, our method ranks the 1st place.
arXiv Detail & Related papers (2023-08-31T05:05:53Z) - Variational Classification [51.2541371924591]
We derive a variational objective to train the model, analogous to the evidence lower bound (ELBO) used to train variational auto-encoders.
Treating inputs to the softmax layer as samples of a latent variable, our abstracted perspective reveals a potential inconsistency.
We induce a chosen latent distribution, instead of the implicit assumption found in a standard softmax layer.
arXiv Detail & Related papers (2023-05-17T17:47:19Z) - Random Smoothing Regularization in Kernel Gradient Descent Learning [24.383121157277007]
We present a framework for random smoothing regularization that can adaptively learn a wide range of ground truth functions belonging to the classical Sobolev spaces.
Our estimator can adapt to the structural assumptions of the underlying data and avoid the curse of dimensionality.
arXiv Detail & Related papers (2023-05-05T13:37:34Z) - Kernel-based off-policy estimation without overlap: Instance optimality
beyond semiparametric efficiency [53.90687548731265]
We study optimal procedures for estimating a linear functional based on observational data.
For any convex and symmetric function class $mathcalF$, we derive a non-asymptotic local minimax bound on the mean-squared error.
arXiv Detail & Related papers (2023-01-16T02:57:37Z) - Off-the-grid prediction and testing for linear combination of translated features [2.774897240515734]
We consider a model where a signal (discrete or continuous) is observed with an additive Gaussian noise process.
We extend previous prediction results for off-the-grid estimators by taking into account that the scale parameter may vary.
We propose a procedure to test whether the features of the observed signal belong to a given finite collection.
arXiv Detail & Related papers (2022-12-02T13:48:45Z) - Inverting brain grey matter models with likelihood-free inference: a
tool for trustable cytoarchitecture measurements [62.997667081978825]
characterisation of the brain grey matter cytoarchitecture with quantitative sensitivity to soma density and volume remains an unsolved challenge in dMRI.
We propose a new forward model, specifically a new system of equations, requiring a few relatively sparse b-shells.
We then apply modern tools from Bayesian analysis known as likelihood-free inference (LFI) to invert our proposed model.
arXiv Detail & Related papers (2021-11-15T09:08:27Z) - Local AdaGrad-Type Algorithm for Stochastic Convex-Concave Minimax
Problems [80.46370778277186]
Large scale convex-concave minimax problems arise in numerous applications, including game theory, robust training, and training of generative adversarial networks.
We develop a communication-efficient distributed extragrad algorithm, LocalAdaSient, with an adaptive learning rate suitable for solving convex-concave minimax problem in the.
Server model.
We demonstrate its efficacy through several experiments in both the homogeneous and heterogeneous settings.
arXiv Detail & Related papers (2021-06-18T09:42:05Z) - Minimax Estimation of Conditional Moment Models [40.95498063465325]
We introduce a min-max criterion function, under which the estimation problem can be thought of as solving a zero-sum game.
We analyze the statistical estimation rate of the resulting estimator for arbitrary hypothesis spaces.
We show how our modified mean squared error rate, combined with conditions that bound the ill-posedness of the inverse problem, lead to mean squared error rates.
arXiv Detail & Related papers (2020-06-12T14:02:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.