Local object crop collision network for efficient simulation of
non-convex objects in GPU-based simulators
- URL: http://arxiv.org/abs/2304.09439v2
- Date: Sat, 10 Jun 2023 14:13:17 GMT
- Title: Local object crop collision network for efficient simulation of
non-convex objects in GPU-based simulators
- Authors: Dongwon Son and Beomjoon Kim
- Abstract summary: Our goal is to develop an efficient contact detection algorithm for large-scale simulation of non-network objects.
We propose a data-driven approach for CD, whose accuracy depends only on the quality and quantity of supplementary materials.
- Score: 6.33790920152602
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Our goal is to develop an efficient contact detection algorithm for
large-scale GPU-based simulation of non-convex objects. Current GPU-based
simulators such as IsaacGym and Brax must trade-off speed with fidelity,
generality, or both when simulating non-convex objects. Their main issue lies
in contact detection (CD): existing CD algorithms, such as
Gilbert-Johnson-Keerthi (GJK), must trade off their computational speed with
accuracy which becomes expensive as the number of collisions among non-convex
objects increases. We propose a data-driven approach for CD, whose accuracy
depends only on the quality and quantity of offline dataset rather than online
computation time. Unlike GJK, our method inherently has a uniform computational
flow, which facilitates efficient GPU usage based on advanced compilers such as
XLA (Accelerated Linear Algebra). Further, we offer a data-efficient solution
by learning the patterns of colliding local crop object shapes, rather than
global object shapes which are harder to learn. We demonstrate our approach
improves the efficiency of existing CD methods by a factor of 5-10 for
non-convex objects with comparable accuracy. Using the previous work on contact
resolution for a neural-network-based contact detector, we integrate our CD
algorithm into the open-source GPU-based simulator, Brax, and show that we can
improve the efficiency over IsaacGym and generality over standard Brax. We
highly recommend the videos of our simulator included in the supplementary
materials.
Related papers
- COmoving Computer Acceleration (COCA): $N$-body simulations in an emulated frame of reference [0.0]
We introduce COmoving Computer Acceleration (COCA), a hybrid framework interfacing machine learning and $N$-body simulations.
The correct physical equations of motion are solved in an emulated frame of reference, so that any emulation error is corrected by design.
COCA efficiently reduces emulation errors in particle trajectories, requiring far fewer force evaluations than running the corresponding simulation without ML.
arXiv Detail & Related papers (2024-09-03T17:27:12Z) - Implementation and Analysis of GPU Algorithms for Vecchia Approximation [0.8057006406834466]
Vecchia Approximation is widely used to reduce the computational complexity and can be calculated with embarrassingly parallel algorithms.
While multi-core software has been developed for Vecchia Approximation, software designed to run on graphics processing units ( GPU) is lacking.
We show that our new method outperforms the other two and then present it in the GpGpU R package.
arXiv Detail & Related papers (2024-07-03T01:24:44Z) - Geometry-Informed Neural Operator for Large-Scale 3D PDEs [76.06115572844882]
We propose the geometry-informed neural operator (GINO) to learn the solution operator of large-scale partial differential equations.
We successfully trained GINO to predict the pressure on car surfaces using only five hundred data points.
arXiv Detail & Related papers (2023-09-01T16:59:21Z) - Going faster to see further: GPU-accelerated value iteration and
simulation for perishable inventory control using JAX [5.856836693166898]
We use the Python library JAX to implement value iteration and simulators of the underlying Markov decision processes in a high-level API.
Our method can extend use of value iteration to settings that were previously considered infeasible or impractical.
We compare the performance of the optimal replenishment policies to policies, fitted using simulation optimization in JAX which allowed the parallel evaluation of multiple candidate policy parameters.
arXiv Detail & Related papers (2023-03-19T14:20:44Z) - Adaptive Elastic Training for Sparse Deep Learning on Heterogeneous
Multi-GPU Servers [65.60007071024629]
We show that Adaptive SGD outperforms four state-of-the-art solutions in time-to-accuracy.
We show experimentally that Adaptive SGD outperforms four state-of-the-art solutions in time-to-accuracy.
arXiv Detail & Related papers (2021-10-13T20:58:15Z) - Neural Implicit Surfaces for Efficient and Accurate Collisions in
Physically Based Simulations [40.679520739784195]
Collision detection and solving is a significant bottleneck on physically based simulations.
We propose using implicit surface representations learnt through deep learning for collision handling in simulations.
Our proposed architecture has a complexity of O(n) -- or O(1) for a single point query -- and has no parallelization issues.
arXiv Detail & Related papers (2021-10-03T09:43:01Z) - Providing Meaningful Data Summarizations Using Examplar-based Clustering
in Industry 4.0 [67.80123919697971]
We show, that our GPU implementation provides speedups of up to 72x using single-precision and up to 452x using half-precision compared to conventional CPU algorithms.
We apply our algorithm to real-world data from injection molding manufacturing processes and discuss how found summaries help with steering this specific process to cut costs and reduce the manufacturing of bad parts.
arXiv Detail & Related papers (2021-05-25T15:55:14Z) - Large Batch Simulation for Deep Reinforcement Learning [101.01408262583378]
We accelerate deep reinforcement learning-based training in visually complex 3D environments by two orders of magnitude over prior work.
We realize end-to-end training speeds of over 19,000 frames of experience per second on a single and up to 72,000 frames per second on a single eight- GPU machine.
By combining batch simulation and performance optimizations, we demonstrate that Point navigation agents can be trained in complex 3D environments on a single GPU in 1.5 days to 97% of the accuracy of agents trained on a prior state-of-the-art system.
arXiv Detail & Related papers (2021-03-12T00:22:50Z) - Kernel methods through the roof: handling billions of points efficiently [94.31450736250918]
Kernel methods provide an elegant and principled approach to nonparametric learning, but so far could hardly be used in large scale problems.
Recent advances have shown the benefits of a number of algorithmic ideas, for example combining optimization, numerical linear algebra and random projections.
Here, we push these efforts further to develop and test a solver that takes full advantage of GPU hardware.
arXiv Detail & Related papers (2020-06-18T08:16:25Z) - Heterogeneous CPU+GPU Stochastic Gradient Descent Algorithms [1.3249453757295084]
We study training algorithms for deep learning on heterogeneous CPU+GPU architectures.
Our two-fold objective -- maximize convergence rate and resource utilization simultaneously -- makes the problem challenging.
We show that the implementation of these algorithms achieves both faster convergence and higher resource utilization than on several real datasets.
arXiv Detail & Related papers (2020-04-19T05:21:20Z) - MPLP++: Fast, Parallel Dual Block-Coordinate Ascent for Dense Graphical
Models [96.1052289276254]
This work introduces a new MAP-solver, based on the popular Dual Block-Coordinate Ascent principle.
Surprisingly, by making a small change to the low-performing solver, we derive the new solver MPLP++ that significantly outperforms all existing solvers by a large margin.
arXiv Detail & Related papers (2020-04-16T16:20:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.