Multiscale Representation for Real-Time Anti-Aliasing Neural Rendering
- URL: http://arxiv.org/abs/2304.10075v2
- Date: Mon, 18 Sep 2023 10:57:33 GMT
- Title: Multiscale Representation for Real-Time Anti-Aliasing Neural Rendering
- Authors: Dongting Hu, Zhenkai Zhang, Tingbo Hou, Tongliang Liu, Huan Fu and
Mingming Gong
- Abstract summary: Mip-NeRF proposes a multiscale representation as a conical frustum to encode scale information.
We propose mip voxel grids (Mip-VoG), an explicit multiscale representation for real-time anti-aliasing rendering.
Our approach is the first to offer multiscale training and real-time anti-aliasing rendering simultaneously.
- Score: 84.37776381343662
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The rendering scheme in neural radiance field (NeRF) is effective in
rendering a pixel by casting a ray into the scene. However, NeRF yields blurred
rendering results when the training images are captured at non-uniform scales,
and produces aliasing artifacts if the test images are taken in distant views.
To address this issue, Mip-NeRF proposes a multiscale representation as a
conical frustum to encode scale information. Nevertheless, this approach is
only suitable for offline rendering since it relies on integrated positional
encoding (IPE) to query a multilayer perceptron (MLP). To overcome this
limitation, we propose mip voxel grids (Mip-VoG), an explicit multiscale
representation with a deferred architecture for real-time anti-aliasing
rendering. Our approach includes a density Mip-VoG for scene geometry and a
feature Mip-VoG with a small MLP for view-dependent color. Mip-VoG encodes
scene scale using the level of detail (LOD) derived from ray differentials and
uses quadrilinear interpolation to map a queried 3D location to its features
and density from two neighboring downsampled voxel grids. To our knowledge, our
approach is the first to offer multiscale training and real-time anti-aliasing
rendering simultaneously. We conducted experiments on multiscale datasets, and
the results show that our approach outperforms state-of-the-art real-time
rendering baselines.
Related papers
- EVER: Exact Volumetric Ellipsoid Rendering for Real-time View Synthesis [72.53316783628803]
We present Exact Volumetric Ellipsoid Rendering (EVER), a method for real-time differentiable emission-only volume rendering.
Unlike recentization based approach by 3D Gaussian Splatting (3DGS), our primitive based representation allows for exact volume rendering.
We show that our method is more accurate with blending issues than 3DGS and follow-up work on view rendering.
arXiv Detail & Related papers (2024-10-02T17:59:09Z) - Freq-Mip-AA : Frequency Mip Representation for Anti-Aliasing Neural Radiance Fields [3.796287987989994]
Mip-NeRF proposed using frustums to render a pixel and suggested integrated positional encoding (IPE)
While effective, this approach requires long training times due to its reliance on volumetric architecture.
We propose a novel anti-aliasing technique that utilizes grid-based representations, usually showing significantly faster training time.
arXiv Detail & Related papers (2024-06-19T06:33:56Z) - CVT-xRF: Contrastive In-Voxel Transformer for 3D Consistent Radiance Fields from Sparse Inputs [65.80187860906115]
We propose a novel approach to improve NeRF's performance with sparse inputs.
We first adopt a voxel-based ray sampling strategy to ensure that the sampled rays intersect with a certain voxel in 3D space.
We then randomly sample additional points within the voxel and apply a Transformer to infer the properties of other points on each ray, which are then incorporated into the volume rendering.
arXiv Detail & Related papers (2024-03-25T15:56:17Z) - Mip-Grid: Anti-aliased Grid Representations for Neural Radiance Fields [12.910072009005065]
We present mip-blur, a novel approach that integrates anti-aliasing techniques into grid-based representations for radiance fields.
The proposed method generates multi-scale grids by applying simple convolution operations over a shared grid representation and uses the scale coordinate to retrieve features at different scales from the generated multi-scale grids.
arXiv Detail & Related papers (2024-02-22T00:45:40Z) - Fast Monocular Scene Reconstruction with Global-Sparse Local-Dense Grids [84.90863397388776]
We propose to directly use signed distance function (SDF) in sparse voxel block grids for fast and accurate scene reconstruction without distances.
Our globally sparse and locally dense data structure exploits surfaces' spatial sparsity, enables cache-friendly queries, and allows direct extensions to multi-modal data.
Experiments show that our approach is 10x faster in training and 100x faster in rendering while achieving comparable accuracy to state-of-the-art neural implicit methods.
arXiv Detail & Related papers (2023-05-22T16:50:19Z) - Multi-Frequency-Aware Patch Adversarial Learning for Neural Point Cloud
Rendering [7.522462414919854]
We present a neural point cloud rendering pipeline through a novel multi-frequency-aware patch adversarial learning framework.
The proposed approach aims to improve the rendering realness by minimizing the spectrum discrepancy between real and synthesized images.
Our method produces state-of-the-art results for neural point cloud rendering by a significant margin.
arXiv Detail & Related papers (2022-10-07T16:54:15Z) - Progressively-connected Light Field Network for Efficient View Synthesis [69.29043048775802]
We present a Progressively-connected Light Field network (ProLiF) for the novel view synthesis of complex forward-facing scenes.
ProLiF encodes a 4D light field, which allows rendering a large batch of rays in one training step for image- or patch-level losses.
arXiv Detail & Related papers (2022-07-10T13:47:20Z) - VoxGRAF: Fast 3D-Aware Image Synthesis with Sparse Voxel Grids [42.74658047803192]
State-of-the-art 3D-aware generative models rely on coordinate-based parameterize 3D radiance fields.
Existing approaches often render low-resolution feature maps and process them with an upsampling network to obtain the final image.
In contrast to existing approaches, our method requires only a single forward pass to generate a full 3D scene.
arXiv Detail & Related papers (2022-06-15T17:44:22Z) - Efficient Textured Mesh Recovery from Multiple Views with Differentiable
Rendering [8.264851594332677]
We propose an efficient coarse-to-fine approach to recover the textured mesh from multi-view images.
We optimize the shape geometry by minimizing the difference between the rendered mesh with the depth predicted by the learning-based multi-view stereo algorithm.
In contrast to the implicit neural representation on shape and color, we introduce a physically based inverse rendering scheme to jointly estimate the lighting and reflectance of the objects.
arXiv Detail & Related papers (2022-05-25T03:33:55Z) - Extracting Triangular 3D Models, Materials, and Lighting From Images [59.33666140713829]
We present an efficient method for joint optimization of materials and lighting from multi-view image observations.
We leverage meshes with spatially-varying materials and environment that can be deployed in any traditional graphics engine.
arXiv Detail & Related papers (2021-11-24T13:58:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.