Image retrieval outperforms diffusion models on data augmentation
- URL: http://arxiv.org/abs/2304.10253v2
- Date: Thu, 30 Nov 2023 10:14:49 GMT
- Title: Image retrieval outperforms diffusion models on data augmentation
- Authors: Max F. Burg, Florian Wenzel, Dominik Zietlow, Max Horn, Osama Makansi,
Francesco Locatello, Chris Russell
- Abstract summary: diffusion models are proposed to augment training datasets for downstream tasks, such as classification.
It remains unclear if they generalize enough to improve over directly using the additional data of their pre-training process for augmentation.
Personalizing diffusion models towards the target data outperforms simpler prompting strategies.
However, using the pre-training data of the diffusion model alone, via a simple nearest-neighbor retrieval procedure, leads to even stronger downstream performance.
- Score: 36.559967424331695
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Many approaches have been proposed to use diffusion models to augment
training datasets for downstream tasks, such as classification. However,
diffusion models are themselves trained on large datasets, often with noisy
annotations, and it remains an open question to which extent these models
contribute to downstream classification performance. In particular, it remains
unclear if they generalize enough to improve over directly using the additional
data of their pre-training process for augmentation. We systematically evaluate
a range of existing methods to generate images from diffusion models and study
new extensions to assess their benefit for data augmentation. Personalizing
diffusion models towards the target data outperforms simpler prompting
strategies. However, using the pre-training data of the diffusion model alone,
via a simple nearest-neighbor retrieval procedure, leads to even stronger
downstream performance. Our study explores the potential of diffusion models in
generating new training data, and surprisingly finds that these sophisticated
models are not yet able to beat a simple and strong image retrieval baseline on
simple downstream vision tasks.
Related papers
- Integrating Amortized Inference with Diffusion Models for Learning Clean Distribution from Corrupted Images [19.957503854446735]
Diffusion models (DMs) have emerged as powerful generative models for solving inverse problems.
FlowDiff is a joint training paradigm that leverages a conditional normalizing flow model to facilitate the training of diffusion models on corrupted data sources.
Our experiment shows that FlowDiff can effectively learn clean distributions across a wide range of corrupted data sources.
arXiv Detail & Related papers (2024-07-15T18:33:20Z) - Improving Discrete Diffusion Models via Structured Preferential Generation [25.784316302130875]
This paper tackles the challenge of improving discrete diffusion models by introducing a structured forward process.
Our approach biases the generative process to produce certain categories before others, resulting in a notable improvement in log-likelihood scores on the text8 dataset.
arXiv Detail & Related papers (2024-05-28T07:11:30Z) - Learning Diffusion Priors from Observations by Expectation Maximization [6.224769485481242]
We present a novel method based on the expectation-maximization algorithm for training diffusion models from incomplete and noisy observations only.
As part of our method, we propose and motivate an improved posterior sampling scheme for unconditional diffusion models.
arXiv Detail & Related papers (2024-05-22T15:04:06Z) - DetDiffusion: Synergizing Generative and Perceptive Models for Enhanced Data Generation and Perception [78.26734070960886]
Current perceptive models heavily depend on resource-intensive datasets.
We introduce perception-aware loss (P.A. loss) through segmentation, improving both quality and controllability.
Our method customizes data augmentation by extracting and utilizing perception-aware attribute (P.A. Attr) during generation.
arXiv Detail & Related papers (2024-03-20T04:58:03Z) - Training Class-Imbalanced Diffusion Model Via Overlap Optimization [55.96820607533968]
Diffusion models trained on real-world datasets often yield inferior fidelity for tail classes.
Deep generative models, including diffusion models, are biased towards classes with abundant training images.
We propose a method based on contrastive learning to minimize the overlap between distributions of synthetic images for different classes.
arXiv Detail & Related papers (2024-02-16T16:47:21Z) - Self-Play Fine-Tuning of Diffusion Models for Text-to-Image Generation [59.184980778643464]
Fine-tuning Diffusion Models remains an underexplored frontier in generative artificial intelligence (GenAI)
In this paper, we introduce an innovative technique called self-play fine-tuning for diffusion models (SPIN-Diffusion)
Our approach offers an alternative to conventional supervised fine-tuning and RL strategies, significantly improving both model performance and alignment.
arXiv Detail & Related papers (2024-02-15T18:59:18Z) - Data Attribution for Diffusion Models: Timestep-induced Bias in Influence Estimation [53.27596811146316]
Diffusion models operate over a sequence of timesteps instead of instantaneous input-output relationships in previous contexts.
We present Diffusion-TracIn that incorporates this temporal dynamics and observe that samples' loss gradient norms are highly dependent on timestep.
We introduce Diffusion-ReTrac as a re-normalized adaptation that enables the retrieval of training samples more targeted to the test sample of interest.
arXiv Detail & Related papers (2024-01-17T07:58:18Z) - Guided Diffusion from Self-Supervised Diffusion Features [49.78673164423208]
Guidance serves as a key concept in diffusion models, yet its effectiveness is often limited by the need for extra data annotation or pretraining.
We propose a framework to extract guidance from, and specifically for, diffusion models.
arXiv Detail & Related papers (2023-12-14T11:19:11Z) - Continual Learning of Diffusion Models with Generative Distillation [34.52513912701778]
Diffusion models are powerful generative models that achieve state-of-the-art performance in image synthesis.
In this paper, we propose generative distillation, an approach that distils the entire reverse process of a diffusion model.
arXiv Detail & Related papers (2023-11-23T14:33:03Z) - Exploring Continual Learning of Diffusion Models [24.061072903897664]
We evaluate the continual learning (CL) properties of diffusion models.
We provide insights into the dynamics of forgetting, which exhibit diverse behavior across diffusion timesteps.
arXiv Detail & Related papers (2023-03-27T15:52:14Z) - Negative Data Augmentation [127.28042046152954]
We show that negative data augmentation samples provide information on the support of the data distribution.
We introduce a new GAN training objective where we use NDA as an additional source of synthetic data for the discriminator.
Empirically, models trained with our method achieve improved conditional/unconditional image generation along with improved anomaly detection capabilities.
arXiv Detail & Related papers (2021-02-09T20:28:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.