Learning Neural Duplex Radiance Fields for Real-Time View Synthesis
- URL: http://arxiv.org/abs/2304.10537v1
- Date: Thu, 20 Apr 2023 17:59:52 GMT
- Title: Learning Neural Duplex Radiance Fields for Real-Time View Synthesis
- Authors: Ziyu Wan, Christian Richardt, Alja\v{z} Bo\v{z}i\v{c}, Chao Li, Vijay
Rengarajan, Seonghyeon Nam, Xiaoyu Xiang, Tuotuo Li, Bo Zhu, Rakesh Ranjan,
Jing Liao
- Abstract summary: We propose a novel approach to distill and bake NeRFs into highly efficient mesh-based neural representations.
We demonstrate the effectiveness and superiority of our approach via extensive experiments on a range of standard datasets.
- Score: 33.54507228895688
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Neural radiance fields (NeRFs) enable novel view synthesis with unprecedented
visual quality. However, to render photorealistic images, NeRFs require
hundreds of deep multilayer perceptron (MLP) evaluations - for each pixel. This
is prohibitively expensive and makes real-time rendering infeasible, even on
powerful modern GPUs. In this paper, we propose a novel approach to distill and
bake NeRFs into highly efficient mesh-based neural representations that are
fully compatible with the massively parallel graphics rendering pipeline. We
represent scenes as neural radiance features encoded on a two-layer duplex
mesh, which effectively overcomes the inherent inaccuracies in 3D surface
reconstruction by learning the aggregated radiance information from a reliable
interval of ray-surface intersections. To exploit local geometric relationships
of nearby pixels, we leverage screen-space convolutions instead of the MLPs
used in NeRFs to achieve high-quality appearance. Finally, the performance of
the whole framework is further boosted by a novel multi-view distillation
optimization strategy. We demonstrate the effectiveness and superiority of our
approach via extensive experiments on a range of standard datasets.
Related papers
- NeRF-Casting: Improved View-Dependent Appearance with Consistent Reflections [57.63028964831785]
Recent works have improved NeRF's ability to render detailed specular appearance of distant environment illumination, but are unable to synthesize consistent reflections of closer content.
We address these issues with an approach based on ray tracing.
Instead of querying an expensive neural network for the outgoing view-dependent radiance at points along each camera ray, our model casts rays from these points and traces them through the NeRF representation to render feature vectors.
arXiv Detail & Related papers (2024-05-23T17:59:57Z) - HybridNeRF: Efficient Neural Rendering via Adaptive Volumetric Surfaces [71.1071688018433]
Neural radiance fields provide state-of-the-art view synthesis quality but tend to be slow to render.
We propose a method, HybridNeRF, that leverages the strengths of both representations by rendering most objects as surfaces.
We improve error rates by 15-30% while achieving real-time framerates (at least 36 FPS) for virtual-reality resolutions (2Kx2K)
arXiv Detail & Related papers (2023-12-05T22:04:49Z) - VoxNeRF: Bridging Voxel Representation and Neural Radiance Fields for
Enhanced Indoor View Synthesis [51.49008959209671]
We introduce VoxNeRF, a novel approach that leverages volumetric representations to enhance the quality and efficiency of indoor view synthesis.
We employ multi-resolution hash grids to adaptively capture spatial features, effectively managing occlusions and the intricate geometry of indoor scenes.
We validate our approach against three public indoor datasets and demonstrate that VoxNeRF outperforms state-of-the-art methods.
arXiv Detail & Related papers (2023-11-09T11:32:49Z) - FlipNeRF: Flipped Reflection Rays for Few-shot Novel View Synthesis [30.25904672829623]
We propose FlipNeRF, a novel regularization method for few-shot novel view synthesis by utilizing our proposed flipped reflection rays.
FlipNeRF is able to estimate more reliable outputs with reducing floating artifacts effectively across the different scene structures.
arXiv Detail & Related papers (2023-06-30T15:11:00Z) - Multi-Space Neural Radiance Fields [74.46513422075438]
Existing Neural Radiance Fields (NeRF) methods suffer from the existence of reflective objects.
We propose a multi-space neural radiance field (MS-NeRF) that represents the scene using a group of feature fields in parallel sub-spaces.
Our approach significantly outperforms the existing single-space NeRF methods for rendering high-quality scenes.
arXiv Detail & Related papers (2023-05-07T13:11:07Z) - SurfelNeRF: Neural Surfel Radiance Fields for Online Photorealistic
Reconstruction of Indoor Scenes [17.711755550841385]
SLAM-based methods can reconstruct 3D scene geometry progressively in real time but can not render photorealistic results.
NeRF-based methods produce promising novel view synthesis results, their long offline optimization time and lack of geometric constraints pose challenges to efficiently handling online input.
We introduce SurfelNeRF, a variant of neural radiance field which employs a flexible and scalable neural surfel representation to store geometric attributes and extracted appearance features from input images.
arXiv Detail & Related papers (2023-04-18T13:11:49Z) - Cascaded and Generalizable Neural Radiance Fields for Fast View
Synthesis [35.035125537722514]
We present CG-NeRF, a cascade and generalizable neural radiance fields method for view synthesis.
We first train CG-NeRF on multiple 3D scenes of the DTU dataset.
We show that CG-NeRF outperforms state-of-the-art generalizable neural rendering methods on various synthetic and real datasets.
arXiv Detail & Related papers (2022-08-09T12:23:48Z) - Learning Neural Light Fields with Ray-Space Embedding Networks [51.88457861982689]
We propose a novel neural light field representation that is compact and directly predicts integrated radiance along rays.
Our method achieves state-of-the-art quality on dense forward-facing datasets such as the Stanford Light Field dataset.
arXiv Detail & Related papers (2021-12-02T18:59:51Z) - MVSNeRF: Fast Generalizable Radiance Field Reconstruction from
Multi-View Stereo [52.329580781898116]
We present MVSNeRF, a novel neural rendering approach that can efficiently reconstruct neural radiance fields for view synthesis.
Unlike prior works on neural radiance fields that consider per-scene optimization on densely captured images, we propose a generic deep neural network that can reconstruct radiance fields from only three nearby input views via fast network inference.
arXiv Detail & Related papers (2021-03-29T13:15:23Z) - Neural Lumigraph Rendering [33.676795978166375]
State-of-the-art (SOTA) neural volume rendering approaches are slow to train and require minutes of inference (i.e., rendering) time for high image resolutions.
We adopt high-capacity neural scene representations with periodic activations for jointly optimizing an implicit surface and a radiance field of a scene supervised exclusively with posed 2D images.
Our neural rendering pipeline accelerates SOTA neural volume rendering by about two orders of magnitude and our implicit surface representation is unique in allowing us to export a mesh with view-dependent texture information.
arXiv Detail & Related papers (2021-03-22T03:46:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.