Stimulating student engagement with an AI board game tournament
- URL: http://arxiv.org/abs/2304.11376v1
- Date: Sat, 22 Apr 2023 11:22:00 GMT
- Title: Stimulating student engagement with an AI board game tournament
- Authors: Ken Hasselmann, Quentin Lurkin
- Abstract summary: We present a project-based and competition-based bachelor course that gives second-year students an introduction to search methods applied to board games.
In groups of two, students have to use network programming and AI methods to build an AI agent to compete in a board game tournament-othello was this year's game.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Strong foundations in basic AI techniques are key to understanding more
advanced concepts. We believe that introducing AI techniques, such as search
methods, early in higher education helps create a deeper understanding of the
concepts seen later in more advanced AI and algorithms courses. We present a
project-based and competition-based bachelor course that gives second-year
students an introduction to search methods applied to board games. In groups of
two, students have to use network programming and AI methods to build an AI
agent to compete in a board game tournament-othello was this year's game.
Students are evaluated based on the quality of their projects and on their
performance during the final tournament. We believe that the introduction of
gamification, in the form of competition-based learning, allows for a better
learning experience for the students.
Related papers
- DanZero+: Dominating the GuanDan Game through Reinforcement Learning [95.90682269990705]
We develop an AI program for an exceptionally complex and popular card game called GuanDan.
We first put forward an AI program named DanZero for this game.
In order to further enhance the AI's capabilities, we apply policy-based reinforcement learning algorithm to GuanDan.
arXiv Detail & Related papers (2023-12-05T08:07:32Z) - Technical Challenges of Deploying Reinforcement Learning Agents for Game
Testing in AAA Games [58.720142291102135]
We describe an effort to add an experimental reinforcement learning system to an existing automated game testing solution based on scripted bots.
We show a use-case of leveraging reinforcement learning in game production and cover some of the largest time sinks anyone who wants to make the same journey for their game may encounter.
We propose a few research directions that we believe will be valuable and necessary for making machine learning, and especially reinforcement learning, an effective tool in game production.
arXiv Detail & Related papers (2023-07-19T18:19:23Z) - DanZero: Mastering GuanDan Game with Reinforcement Learning [121.93690719186412]
Card game AI has always been a hot topic in the research of artificial intelligence.
In this paper, we are devoted to developing an AI program for a more complex card game, GuanDan.
We propose the first AI program DanZero for GuanDan using reinforcement learning technique.
arXiv Detail & Related papers (2022-10-31T06:29:08Z) - Retrospective on the 2021 BASALT Competition on Learning from Human
Feedback [92.37243979045817]
The goal of the competition was to promote research towards agents that use learning from human feedback (LfHF) techniques to solve open-world tasks.
Rather than mandating the use of LfHF techniques, we described four tasks in natural language to be accomplished in the video game Minecraft.
Teams developed a diverse range of LfHF algorithms across a variety of possible human feedback types.
arXiv Detail & Related papers (2022-04-14T17:24:54Z) - AI in Games: Techniques, Challenges and Opportunities [40.86375378643978]
Various game AI systems (AIs) have been developed such as Libratus, OpenAI Five and AlphaStar, beating professional human players.
In this paper, we survey recent successful game AIs, covering board game AIs, card game AIs, first-person shooting game AIs and real time strategy game AIs.
arXiv Detail & Related papers (2021-11-15T09:35:53Z) - Teaching Fairness, Accountability, Confidentiality, and Transparency in
Artificial Intelligence through the Lens of Reproducibility [38.87910190291545]
We explain the setup for a technical, graduate-level course on Fairness, Accountability, Confidentiality and Transparency in Artificial Intelligence (FACT-AI) at the University of Amsterdam.
The focal point of the course is a group project based on existing FACT-AI algorithms from top AI conferences, and writing a report about their experiences.
arXiv Detail & Related papers (2021-11-01T10:58:35Z) - The MineRL BASALT Competition on Learning from Human Feedback [58.17897225617566]
The MineRL BASALT competition aims to spur forward research on this important class of techniques.
We design a suite of four tasks in Minecraft for which we expect it will be hard to write down hardcoded reward functions.
We provide a dataset of human demonstrations on each of the four tasks, as well as an imitation learning baseline.
arXiv Detail & Related papers (2021-07-05T12:18:17Z) - ColorShapeLinks: A board game AI competition for educators and students [0.0]
ColorShapeLinks is an AI board game competition framework specially designed for students and educators in videogame development.
It has been successfully used for running internal competitions in AI classes, as well as for hosting an international AI competition at the IEEE Conference on Games.
arXiv Detail & Related papers (2020-12-16T15:21:29Z) - A Game AI Competition to foster Collaborative AI research and
development [5.682875185620577]
We present the Geometry Friends Game AI Competition.
The concept of the game is simple, though its solving has proven to be difficult.
We discuss the competition and the challenges it brings, and present an overview of the current solutions.
arXiv Detail & Related papers (2020-10-17T23:03:06Z) - Learning from Learners: Adapting Reinforcement Learning Agents to be
Competitive in a Card Game [71.24825724518847]
We present a study on how popular reinforcement learning algorithms can be adapted to learn and to play a real-world implementation of a competitive multiplayer card game.
We propose specific training and validation routines for the learning agents, in order to evaluate how the agents learn to be competitive and explain how they adapt to each others' playing style.
arXiv Detail & Related papers (2020-04-08T14:11:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.