Pseudo Labels Refinement with Intra-camera Similarity for Unsupervised
Person Re-identification
- URL: http://arxiv.org/abs/2304.12634v1
- Date: Tue, 25 Apr 2023 08:04:12 GMT
- Title: Pseudo Labels Refinement with Intra-camera Similarity for Unsupervised
Person Re-identification
- Authors: Pengna Li, Kangyi Wu, Sanping Zhou.Qianxin Huang, Jinjun Wang
- Abstract summary: Unsupervised person re-identification (Re-ID) aims to retrieve person images across cameras without any identity labels.
Most clustering-based methods roughly divide image features into clusters and neglect the feature distribution noise caused by domain shifts among different cameras.
We propose a novel label refinement framework with clustering intra-camera similarity.
- Score: 8.779246907359706
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Unsupervised person re-identification (Re-ID) aims to retrieve person images
across cameras without any identity labels. Most clustering-based methods
roughly divide image features into clusters and neglect the feature
distribution noise caused by domain shifts among different cameras, leading to
inevitable performance degradation. To address this challenge, we propose a
novel label refinement framework with clustering intra-camera similarity.
Intra-camera feature distribution pays more attention to the appearance of
pedestrians and labels are more reliable. We conduct intra-camera training to
get local clusters in each camera, respectively, and refine inter-camera
clusters with local results. We hence train the Re-ID model with refined
reliable pseudo labels in a self-paced way. Extensive experiments demonstrate
that the proposed method surpasses state-of-the-art performance.
Related papers
- Camera-aware Label Refinement for Unsupervised Person Re-identification [19.099192313056296]
Unsupervised person re-identification aims to retrieve images of a specified person without identity labels.
Recent unsupervised Re-ID approaches adopt clustering-based methods to measure cross-camera feature similarity.
We introduce a textbfCamera-textbfAware textbfLabel textbfRefinement(CALR) framework that reduces camera discrepancy by clustering intra-camera similarity.
arXiv Detail & Related papers (2024-03-25T06:22:27Z) - Camera-Driven Representation Learning for Unsupervised Domain Adaptive
Person Re-identification [33.25577310265293]
We introduce a camera-driven curriculum learning framework that leverages camera labels to transfer knowledge from source to target domains progressively.
For each curriculum sequence, we generate pseudo labels of person images in a target domain to train a reID model in a supervised way.
We have observed that the pseudo labels are highly biased toward cameras, suggesting that person images obtained from the same camera are likely to have the same pseudo labels, even for different IDs.
arXiv Detail & Related papers (2023-08-23T04:01:56Z) - Pseudo-Pair based Self-Similarity Learning for Unsupervised Person
Re-identification [47.44945334929426]
We present a pseudo-pair based self-similarity learning approach for unsupervised person re-ID without human annotations.
We propose to assign pseudo labels to images through the pairwise-guided similarity separation.
It learns local discriminative features from individual images via intra-similarity, and discovers the patch correspondence across images via inter-similarity.
arXiv Detail & Related papers (2022-07-09T04:05:06Z) - Cross-Camera Feature Prediction for Intra-Camera Supervised Person
Re-identification across Distant Scenes [70.30052164401178]
Person re-identification (Re-ID) aims to match person images across non-overlapping camera views.
ICS-DS Re-ID uses cross-camera unpaired data with intra-camera identity labels for training.
Cross-camera feature prediction method to mine cross-camera self supervision information.
Joint learning of global-level and local-level features forms a global-local cross-camera feature prediction scheme.
arXiv Detail & Related papers (2021-07-29T11:27:50Z) - Intra-Inter Camera Similarity for Unsupervised Person Re-Identification [50.85048976506701]
We study a novel intra-inter camera similarity for pseudo-label generation.
We train our re-id model in two stages with intra-camera and inter-camera pseudo-labels, respectively.
This simple intra-inter camera similarity produces surprisingly good performance on multiple datasets.
arXiv Detail & Related papers (2021-03-22T08:29:04Z) - Joint Noise-Tolerant Learning and Meta Camera Shift Adaptation for
Unsupervised Person Re-Identification [60.36551512902312]
unsupervised person re-identification (re-ID) aims to learn discriminative models with unlabeled data.
One popular method is to obtain pseudo-label by clustering and use them to optimize the model.
In this paper, we propose a unified framework to solve both problems.
arXiv Detail & Related papers (2021-03-08T09:13:06Z) - Camera-aware Proxies for Unsupervised Person Re-Identification [60.26031011794513]
This paper tackles the purely unsupervised person re-identification (Re-ID) problem that requires no annotations.
We propose to split each single cluster into multiple proxies and each proxy represents the instances coming from the same camera.
Based on the camera-aware proxies, we design both intra- and inter-camera contrastive learning components for our Re-ID model.
arXiv Detail & Related papers (2020-12-19T12:37:04Z) - Towards Precise Intra-camera Supervised Person Re-identification [54.86892428155225]
Intra-camera supervision (ICS) for person re-identification (Re-ID) assumes that identity labels are independently annotated within each camera view.
Lack of inter-camera labels makes the ICS Re-ID problem much more challenging than the fully supervised counterpart.
Our approach performs even comparable to state-of-the-art fully supervised methods in two of the datasets.
arXiv Detail & Related papers (2020-02-12T11:56:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.