The Generations of Classical Correlations via Quantum Schemes
- URL: http://arxiv.org/abs/2304.12690v2
- Date: Tue, 14 May 2024 03:42:30 GMT
- Title: The Generations of Classical Correlations via Quantum Schemes
- Authors: Zhenyu Chen, Lijinzhi Lin, Xiaodie Lin, Zhaohui Wei, Penghui Yao,
- Abstract summary: We consider whether Alice and Bob can use a given seed to generate a target classical correlation.
We show that this problem has rich mathematical structures.
- Score: 7.356286276889331
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Suppose two separated parties, Alice and Bob, share a bipartite quantum state or a classical correlation called a \emph{seed}, and they try to generate a target classical correlation by performing local quantum or classical operations on the seed, i.e., any communications are not allowed. We consider the following fundamental problem about this setting: whether Alice and Bob can use a given seed to generate a target classical correlation. We show that this problem has rich mathematical structures. Firstly, we prove that even if the seed is a pure bipartite state, the above decision problem is already NP-hard and a similar conclusion can also be drawn when the seed is also a classical correlation, implying that this problem is hard to solve generally. Furthermore, we prove that when the seed is a pure quantum state, solving the problem is equivalent to finding out whether the target classical correlation has some diagonal form of positive semi-definite factorizations that matches the seed pure state, revealing an interesting connection between the current problem and optimization theory. Based on this observation and other insights, we give several necessary conditions where the seed pure state has to satisfy to generate the target classical correlation, and it turns out that these conditions can also be generalized to the case that the seed is a mixed quantum state. Lastly, since diagonal forms of positive semi-definite factorizations play a crucial role in solving the problem, we develop an algorithm that can compute them for an arbitrary classical correlation, which has decent performance on the cases we test.
Related papers
- From classical probability densities to quantum states: quantization of Gaussians for arbitrary orderings [0.0]
We consider a Gaussian whose squared variance depends on a parameter $lambda$.
We find that even a $delta$-function, which in general has no quantum correspondence, can be mapped into a valid quantum state.
arXiv Detail & Related papers (2024-11-21T11:44:24Z) - Ergodic and chaotic properties in Tavis-Cummings dimer: quantum and classical limit [0.0]
We investigate two key aspects of quantum systems by using the Tavis-Cummings dimer system as a platform.
The first aspect involves unraveling the relationship between the phenomenon of self-trapping (or lack thereof) and integrability (or quantum chaos)
Secondly, we uncover the possibility of mixed behavior in this quantum system using diagnostics based on random matrix theory.
arXiv Detail & Related papers (2024-04-21T13:05:29Z) - Communication Complexity of Common Randomness Generation with Isotropic
States [5.312109949216557]
The paper considers two communication models -- one-way classical communication and one-way quantum communication.
We show that in the case of classical communication, quantum isotropic states have no advantage over noisy classical correlation.
In the case of quantum communication, we demonstrate that the common randomness rate can be increased by using superdense coding on quantum isotropic states.
arXiv Detail & Related papers (2023-11-08T14:48:15Z) - Upper Bounds on the Distillable Randomness of Bipartite Quantum States [15.208790082352351]
distillable randomness of a bipartite quantum state is an information-theoretic quantity.
We prove measures of classical correlations and prove a number of their properties.
We then further bound these measures from above by some that are efficiently computable by means of semi-definite programming.
arXiv Detail & Related papers (2022-12-18T12:06:25Z) - Cone-Restricted Information Theory [4.358456799125693]
We show which results in quantum information theory rely upon the positive semidefinite cone and which can be generalized.
We present parallel results for the extended conditional min-entropy.
In doing so, we extend the notion of k-superpositive channels to superchannels.
arXiv Detail & Related papers (2022-06-09T06:27:48Z) - Quantum dynamics corresponding to chaotic BKL scenario [62.997667081978825]
Quantization smears the gravitational singularity avoiding its localization in the configuration space.
Results suggest that the generic singularity of general relativity can be avoided at quantum level.
arXiv Detail & Related papers (2022-04-24T13:32:45Z) - Why we should interpret density matrices as moment matrices: the case of
(in)distinguishable particles and the emergence of classical reality [69.62715388742298]
We introduce a formulation of quantum theory (QT) as a general probabilistic theory but expressed via quasi-expectation operators (QEOs)
We will show that QT for both distinguishable and indistinguishable particles can be formulated in this way.
We will show that finitely exchangeable probabilities for a classical dice are as weird as QT.
arXiv Detail & Related papers (2022-03-08T14:47:39Z) - Experimental violations of Leggett-Garg's inequalities on a quantum
computer [77.34726150561087]
We experimentally observe the violations of Leggett-Garg-Bell's inequalities on single and multi-qubit systems.
Our analysis highlights the limits of nowadays quantum platforms, showing that the above-mentioned correlation functions deviate from theoretical prediction as the number of qubits and the depth of the circuit grow.
arXiv Detail & Related papers (2021-09-06T14:35:15Z) - The principle of majorization: application to random quantum circuits [68.8204255655161]
Three classes of circuits were considered: (i) universal, (ii) classically simulatable, and (iii) neither universal nor classically simulatable.
We verified that all the families of circuits satisfy on average the principle of majorization.
Clear differences appear in the fluctuations of the Lorenz curves associated to states.
arXiv Detail & Related papers (2021-02-19T16:07:09Z) - Secure Two-Party Quantum Computation Over Classical Channels [63.97763079214294]
We consider the setting where the two parties (a classical Alice and a quantum Bob) can communicate only via a classical channel.
We show that it is in general impossible to realize a two-party quantum functionality with black-box simulation in the case of malicious quantum adversaries.
We provide a compiler that takes as input a classical proof of quantum knowledge (PoQK) protocol for a QMA relation R and outputs a zero-knowledge PoQK for R that can be verified by classical parties.
arXiv Detail & Related papers (2020-10-15T17:55:31Z) - Emergence of classical behavior in the early universe [68.8204255655161]
Three notions are often assumed to be essentially equivalent, representing different facets of the same phenomenon.
We analyze them in general Friedmann-Lemaitre- Robertson-Walker space-times through the lens of geometric structures on the classical phase space.
The analysis shows that: (i) inflation does not play an essential role; classical behavior can emerge much more generally; (ii) the three notions are conceptually distinct; classicality can emerge in one sense but not in another.
arXiv Detail & Related papers (2020-04-22T16:38:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.