Centralized control for multi-agent RL in a complex Real-Time-Strategy
game
- URL: http://arxiv.org/abs/2304.13004v1
- Date: Tue, 25 Apr 2023 17:19:05 GMT
- Title: Centralized control for multi-agent RL in a complex Real-Time-Strategy
game
- Authors: Roger Creus Castanyer
- Abstract summary: Multi-agent Reinforcement learning (MARL) studies the behaviour of multiple learning agents that coexist in a shared environment.
MARL is more challenging than single-agent RL because it involves more complex learning dynamics.
This project provides the end-to-end experience of applying RL in the Lux AI v2 Kaggle competition.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Multi-agent Reinforcement learning (MARL) studies the behaviour of multiple
learning agents that coexist in a shared environment. MARL is more challenging
than single-agent RL because it involves more complex learning dynamics: the
observations and rewards of each agent are functions of all other agents. In
the context of MARL, Real-Time Strategy (RTS) games represent very challenging
environments where multiple players interact simultaneously and control many
units of different natures all at once. In fact, RTS games are so challenging
for the current RL methods, that just being able to tackle them with RL is
interesting. This project provides the end-to-end experience of applying RL in
the Lux AI v2 Kaggle competition, where competitors design agents to control
variable-sized fleets of units and tackle a multi-variable optimization,
resource gathering, and allocation problem in a 1v1 scenario against other
competitors. We use a centralized approach for training the RL agents, and
report multiple design decisions along the process. We provide the source code
of the project: https://github.com/roger-creus/centralized-control-lux.
Related papers
- Learning From Good Trajectories in Offline Multi-Agent Reinforcement
Learning [98.07495732562654]
offline multi-agent reinforcement learning (MARL) aims to learn effective multi-agent policies from pre-collected datasets.
One agent learned by offline MARL often inherits this random policy, jeopardizing the performance of the entire team.
We propose a novel framework called Shared Individual Trajectories (SIT) to address this problem.
arXiv Detail & Related papers (2022-11-28T18:11:26Z) - Mastering the Unsupervised Reinforcement Learning Benchmark from Pixels [112.63440666617494]
Reinforcement learning algorithms can succeed but require large amounts of interactions between the agent and the environment.
We propose a new method to solve it, using unsupervised model-based RL, for pre-training the agent.
We show robust performance on the Real-Word RL benchmark, hinting at resiliency to environment perturbations during adaptation.
arXiv Detail & Related papers (2022-09-24T14:22:29Z) - Reinforcement Learning Agents in Colonel Blotto [0.0]
We focus on a specific instance of agent-based models, which uses reinforcement learning (RL) to train the agent how to act in its environment.
We find that the RL agent handily beats a single opponent, and still performs quite well when the number of opponents are increased.
We also analyze the RL agent and look at what strategies it has arrived by looking at the actions that it has given the highest and lowest Q-values.
arXiv Detail & Related papers (2022-04-04T16:18:01Z) - Explore and Control with Adversarial Surprise [78.41972292110967]
Reinforcement learning (RL) provides a framework for learning goal-directed policies given user-specified rewards.
We propose a new unsupervised RL technique based on an adversarial game which pits two policies against each other to compete over the amount of surprise an RL agent experiences.
We show that our method leads to the emergence of complex skills by exhibiting clear phase transitions.
arXiv Detail & Related papers (2021-07-12T17:58:40Z) - Continuous Coordination As a Realistic Scenario for Lifelong Learning [6.044372319762058]
We introduce a multi-agent lifelong learning testbed that supports both zero-shot and few-shot settings.
We evaluate several recent MARL methods, and benchmark state-of-the-art LLL algorithms in limited memory and computation.
We empirically show that the agents trained in our setup are able to coordinate well with unseen agents, without any additional assumptions made by previous works.
arXiv Detail & Related papers (2021-03-04T18:44:03Z) - Learning Monopoly Gameplay: A Hybrid Model-Free Deep Reinforcement
Learning and Imitation Learning Approach [31.066718635447746]
Reinforcement Learning (RL) relies on an agent interacting with an environment to maximize the cumulative sum of rewards received by it.
In multi-player Monopoly game, players have to make several decisions every turn which involves complex actions, such as making trades.
This paper introduces a Hybrid Model-Free Deep RL (DRL) approach that is capable of playing and learning winning strategies of Monopoly.
arXiv Detail & Related papers (2021-03-01T01:40:02Z) - TLeague: A Framework for Competitive Self-Play based Distributed
Multi-Agent Reinforcement Learning [28.795986840557475]
TLeague aims at large-scale training and implements several main-stream-MARL algorithms.
We present experiments over StarCraft II, ViZDoom and Pommerman to show the efficiency and effectiveness of TLeague.
arXiv Detail & Related papers (2020-11-25T17:24:20Z) - Multi-Agent Collaboration via Reward Attribution Decomposition [75.36911959491228]
We propose Collaborative Q-learning (CollaQ) that achieves state-of-the-art performance in the StarCraft multi-agent challenge.
CollaQ is evaluated on various StarCraft Attribution maps and shows that it outperforms existing state-of-the-art techniques.
arXiv Detail & Related papers (2020-10-16T17:42:11Z) - The NetHack Learning Environment [79.06395964379107]
We present the NetHack Learning Environment (NLE), a procedurally generated rogue-like environment for Reinforcement Learning research.
We argue that NetHack is sufficiently complex to drive long-term research on problems such as exploration, planning, skill acquisition, and language-conditioned RL.
We demonstrate empirical success for early stages of the game using a distributed Deep RL baseline and Random Network Distillation exploration.
arXiv Detail & Related papers (2020-06-24T14:12:56Z) - Distributed Reinforcement Learning for Cooperative Multi-Robot Object
Manipulation [53.262360083572005]
We consider solving a cooperative multi-robot object manipulation task using reinforcement learning (RL)
We propose two distributed multi-agent RL approaches: distributed approximate RL (DA-RL) and game-theoretic RL (GT-RL)
Although we focus on a small system of two agents in this paper, both DA-RL and GT-RL apply to general multi-agent systems, and are expected to scale well to large systems.
arXiv Detail & Related papers (2020-03-21T00:43:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.