The Update-Equivalence Framework for Decision-Time Planning
- URL: http://arxiv.org/abs/2304.13138v3
- Date: Mon, 13 May 2024 14:34:54 GMT
- Title: The Update-Equivalence Framework for Decision-Time Planning
- Authors: Samuel Sokota, Gabriele Farina, David J. Wu, Hengyuan Hu, Kevin A. Wang, J. Zico Kolter, Noam Brown,
- Abstract summary: We introduce an alternative framework for decision-time planning that is not based on solving subgames, but rather on update equivalence.
We derive a provably sound search algorithm for fully cooperative games based on mirror descent and a search algorithm for adversarial games based on magnetic mirror descent.
- Score: 78.44953498421854
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The process of revising (or constructing) a policy at execution time -- known as decision-time planning -- has been key to achieving superhuman performance in perfect-information games like chess and Go. A recent line of work has extended decision-time planning to imperfect-information games, leading to superhuman performance in poker. However, these methods involve solving subgames whose sizes grow quickly in the amount of non-public information, making them unhelpful when the amount of non-public information is large. Motivated by this issue, we introduce an alternative framework for decision-time planning that is not based on solving subgames, but rather on update equivalence. In this update-equivalence framework, decision-time planning algorithms replicate the updates of last-iterate algorithms, which need not rely on public information. This facilitates scalability to games with large amounts of non-public information. Using this framework, we derive a provably sound search algorithm for fully cooperative games based on mirror descent and a search algorithm for adversarial games based on magnetic mirror descent. We validate the performance of these algorithms in cooperative and adversarial domains, notably in Hanabi, the standard benchmark for search in fully cooperative imperfect-information games. Here, our mirror descent approach exceeds or matches the performance of public information-based search while using two orders of magnitude less search time. This is the first instance of a non-public-information-based algorithm outperforming public-information-based approaches in a domain they have historically dominated.
Related papers
- Increasing the Value of Information During Planning in Uncertain Environments [0.0]
We develop a new algorithm that improves upon state-of-the-art online planning by better reflecting on the value of actions that gather information.
Results indicate that our new algorithm performs significantly better than POMCP.
arXiv Detail & Related papers (2024-09-14T22:04:34Z) - Playing Board Games with the Predict Results of Beam Search Algorithm [0.0]
This paper introduces a novel algorithm for two-player deterministic games with perfect information, which we call PROBS (Predict Results of Beam Search)
We evaluate the performance of our algorithm across a selection of board games, where it consistently demonstrates an increased winning ratio against baseline opponents.
A key result of this study is that the PROBS algorithm operates effectively, even when the beam search size is considerably smaller than the average number of turns in the game.
arXiv Detail & Related papers (2024-04-23T20:10:27Z) - History Filtering in Imperfect Information Games: Algorithms and
Complexity [16.23892847804002]
We introduce and analyze the computational aspects and tractability of filtering histories for subgame decomposition.
We show that constructing a single history from the root of the subgame is generally intractable.
We also introduce a novel Markov Chain Monte Carlo-based generation algorithm for trick-taking card games.
arXiv Detail & Related papers (2023-11-24T18:34:36Z) - Hardness of Independent Learning and Sparse Equilibrium Computation in
Markov Games [70.19141208203227]
We consider the problem of decentralized multi-agent reinforcement learning in Markov games.
We show that no algorithm attains no-regret in general-sum games when executed independently by all players.
We show that our lower bounds hold even for seemingly easier setting in which all agents are controlled by a centralized algorithm.
arXiv Detail & Related papers (2023-03-22T03:28:12Z) - Revisiting Game Representations: The Hidden Costs of Efficiency in
Sequential Decision-making Algorithms [0.6749750044497732]
Recent advancements in algorithms for sequential decision-making under imperfect information have shown remarkable success in large games.
These algorithms traditionally formalize the games using the extensive-form game formalism.
We show that a popular workaround involves using a specialized representation based on player specific information-state trees.
arXiv Detail & Related papers (2021-12-20T22:34:19Z) - Machine Learning for Online Algorithm Selection under Censored Feedback [71.6879432974126]
In online algorithm selection (OAS), instances of an algorithmic problem class are presented to an agent one after another, and the agent has to quickly select a presumably best algorithm from a fixed set of candidate algorithms.
For decision problems such as satisfiability (SAT), quality typically refers to the algorithm's runtime.
In this work, we revisit multi-armed bandit algorithms for OAS and discuss their capability of dealing with the problem.
We adapt them towards runtime-oriented losses, allowing for partially censored data while keeping a space- and time-complexity independent of the time horizon.
arXiv Detail & Related papers (2021-09-13T18:10:52Z) - Faster Algorithms for Optimal Ex-Ante Coordinated Collusive Strategies
in Extensive-Form Zero-Sum Games [123.76716667704625]
We focus on the problem of finding an optimal strategy for a team of two players that faces an opponent in an imperfect-information zero-sum extensive-form game.
In that setting, it is known that the best the team can do is sample a profile of potentially randomized strategies (one per player) from a joint (a.k.a. correlated) probability distribution at the beginning of the game.
We provide an algorithm that computes such an optimal distribution by only using profiles where only one of the team members gets to randomize in each profile.
arXiv Detail & Related papers (2020-09-21T17:51:57Z) - Run2Survive: A Decision-theoretic Approach to Algorithm Selection based
on Survival Analysis [75.64261155172856]
survival analysis (SA) naturally supports censored data and offers appropriate ways to use such data for learning distributional models of algorithm runtime.
We leverage such models as a basis of a sophisticated decision-theoretic approach to algorithm selection, which we dub Run2Survive.
In an extensive experimental study with the standard benchmark ASlib, our approach is shown to be highly competitive and in many cases even superior to state-of-the-art AS approaches.
arXiv Detail & Related papers (2020-07-06T15:20:17Z) - Learning to Accelerate Heuristic Searching for Large-Scale Maximum
Weighted b-Matching Problems in Online Advertising [51.97494906131859]
Bipartite b-matching is fundamental in algorithm design, and has been widely applied into economic markets, labor markets, etc.
Existing exact and approximate algorithms usually fail in such settings due to either requiring intolerable running time or too much computation resource.
We propose textttNeuSearcher which leverages the knowledge learned from previously instances to solve new problem instances.
arXiv Detail & Related papers (2020-05-09T02:48:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.