Optimal and exact recovery on general non-uniform Hypergraph Stochastic Block Model
- URL: http://arxiv.org/abs/2304.13139v3
- Date: Wed, 28 Aug 2024 00:10:13 GMT
- Title: Optimal and exact recovery on general non-uniform Hypergraph Stochastic Block Model
- Authors: Ioana Dumitriu, Haixiao Wang,
- Abstract summary: We consider the community detection problem in random hypergraphs under the non-uniform hypergraphinger block model (HSBM)
We establish, for the first time in the literature, a sharp threshold for exact recovery under this non-uniform case, subject to minor constraints.
We provide two efficient algorithms which successfully achieve exact recovery when above the threshold, and attain the lowest possible ratio when the exact recovery is impossible.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Consider the community detection problem in random hypergraphs under the non-uniform hypergraph stochastic block model (HSBM), where each hyperedge appears independently with some given probability depending only on the labels of its vertices. We establish, for the first time in the literature, a sharp threshold for exact recovery under this non-uniform case, subject to minor constraints; in particular, we consider the model with multiple communities. One crucial point here is that by aggregating information from all the uniform layers, we may obtain exact recovery even in cases when this may appear impossible if each layer were considered alone. Besides that, we prove a wide-ranging, information-theoretic lower bound on the number of misclassified vertices \emph{for any algorithm}, depending on a \emph{generalized Chernoff-Hellinger} divergence involving model parameters. We provide two efficient algorithms which successfully achieve exact recovery when above the threshold, and attain the lowest possible mismatch ratio when the exact recovery is impossible, proved to be optimal. The theoretical analysis of our algorithms relies on the concentration and regularization of the adjacency matrix for non-uniform random hypergraphs, which could be of independent interest. We also address some open problems regarding parameter knowledge and estimation.
Related papers
- Error Feedback under $(L_0,L_1)$-Smoothness: Normalization and Momentum [56.37522020675243]
We provide the first proof of convergence for normalized error feedback algorithms across a wide range of machine learning problems.
We show that due to their larger allowable stepsizes, our new normalized error feedback algorithms outperform their non-normalized counterparts on various tasks.
arXiv Detail & Related papers (2024-10-22T10:19:27Z) - Best Arm Identification with Fixed Budget: A Large Deviation Perspective [54.305323903582845]
We present sred, a truly adaptive algorithm that can reject arms in it any round based on the observed empirical gaps between the rewards of various arms.
In particular, we present sred, a truly adaptive algorithm that can reject arms in it any round based on the observed empirical gaps between the rewards of various arms.
arXiv Detail & Related papers (2023-12-19T13:17:43Z) - Curvature-Independent Last-Iterate Convergence for Games on Riemannian
Manifolds [77.4346324549323]
We show that a step size agnostic to the curvature of the manifold achieves a curvature-independent and linear last-iterate convergence rate.
To the best of our knowledge, the possibility of curvature-independent rates and/or last-iterate convergence has not been considered before.
arXiv Detail & Related papers (2023-06-29T01:20:44Z) - Strong consistency and optimality of spectral clustering in symmetric
binary non-uniform Hypergraph Stochastic Block Model [0.0]
We study the unsupervised classification problem in random hypergraphs under the non-uniform emphHypergraph Block Model (HSBM)
We find that strong consistency is achievable by aggregating information from all uniform layers, even if it is impossible when each layer is considered alone.
arXiv Detail & Related papers (2023-06-12T03:38:25Z) - Semi-Supervised Clustering of Sparse Graphs: Crossing the
Information-Theoretic Threshold [3.6052935394000234]
Block model is a canonical random graph model for clustering and community detection on network-structured data.
No estimator based on the network topology can perform substantially better than chance on sparse graphs if the model parameter is below a certain threshold.
We prove that with an arbitrary fraction of the labels feasible throughout the parameter domain.
arXiv Detail & Related papers (2022-05-24T00:03:25Z) - Nonconvex Stochastic Scaled-Gradient Descent and Generalized Eigenvector
Problems [98.34292831923335]
Motivated by the problem of online correlation analysis, we propose the emphStochastic Scaled-Gradient Descent (SSD) algorithm.
We bring these ideas together in an application to online correlation analysis, deriving for the first time an optimal one-time-scale algorithm with an explicit rate of local convergence to normality.
arXiv Detail & Related papers (2021-12-29T18:46:52Z) - Partial recovery and weak consistency in the non-uniform hypergraph Stochastic Block Model [6.681901523019242]
We consider the community detection problem in random hypergraphs under the nonuniform hypergraph block model (HSBM)
We provide a spectral algorithm that outputs a partition with at least a $gamma$ fraction of the vertices classified correctly, where $gammain depends on the signal-to-noise ratio (SNR) of the model.
The theoretical analysis of our algorithm relies on the concentration and regularization of the adjacency matrix for non-uniform random hypergraphs, which can be of independent interest.
arXiv Detail & Related papers (2021-12-22T05:38:33Z) - Exact Recovery in the General Hypergraph Stochastic Block Model [92.28929858529679]
This paper investigates fundamental limits of exact recovery in the general d-uniform hypergraph block model (d-HSBM)
We show that there exists a sharp threshold such that exact recovery is achievable above the threshold and impossible below it.
arXiv Detail & Related papers (2021-05-11T03:39:08Z) - Spectral clustering under degree heterogeneity: a case for the random
walk Laplacian [83.79286663107845]
This paper shows that graph spectral embedding using the random walk Laplacian produces vector representations which are completely corrected for node degree.
In the special case of a degree-corrected block model, the embedding concentrates about K distinct points, representing communities.
arXiv Detail & Related papers (2021-05-03T16:36:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.