Splitting physics-informed neural networks for inferring the dynamics of
integer- and fractional-order neuron models
- URL: http://arxiv.org/abs/2304.13205v1
- Date: Wed, 26 Apr 2023 00:11:00 GMT
- Title: Splitting physics-informed neural networks for inferring the dynamics of
integer- and fractional-order neuron models
- Authors: Simin Shekarpaz, Fanhai Zeng, and George Karniadakis
- Abstract summary: We introduce a new approach for solving forward systems of differential equations using a combination of splitting methods and physics-informed neural networks (PINNs)
The proposed method, splitting PINN, effectively addresses the challenge of applying PINNs to forward dynamical systems.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: We introduce a new approach for solving forward systems of differential
equations using a combination of splitting methods and physics-informed neural
networks (PINNs). The proposed method, splitting PINN, effectively addresses
the challenge of applying PINNs to forward dynamical systems and demonstrates
improved accuracy through its application to neuron models. Specifically, we
apply operator splitting to decompose the original neuron model into
sub-problems that are then solved using PINNs. Moreover, we develop an $L^1$
scheme for discretizing fractional derivatives in fractional neuron models,
leading to improved accuracy and efficiency. The results of this study
highlight the potential of splitting PINNs in solving both integer- and
fractional-order neuron models, as well as other similar systems in
computational science and engineering.
Related papers
- Chebyshev Spectral Neural Networks for Solving Partial Differential Equations [0.0]
The study uses a feedforward neural network model and error backpropagation principles, utilizing automatic differentiation (AD) to compute the loss function.
The numerical efficiency and accuracy of the CSNN model are investigated through testing on elliptic partial differential equations, and it is compared with the well-known Physics-Informed Neural Network(PINN) method.
arXiv Detail & Related papers (2024-06-06T05:31:45Z) - Binary structured physics-informed neural networks for solving equations
with rapidly changing solutions [3.6415476576196055]
Physics-informed neural networks (PINNs) have emerged as a promising approach for solving partial differential equations (PDEs)
We propose a binary structured physics-informed neural network (BsPINN) framework, which employs binary structured neural network (BsNN) as the neural network component.
BsPINNs exhibit superior convergence speed and heightened accuracy compared to PINNs.
arXiv Detail & Related papers (2024-01-23T14:37:51Z) - PMNN:Physical Model-driven Neural Network for solving time-fractional
differential equations [17.66402435033991]
An innovative Physical Model-driven Neural Network (PMNN) method is proposed to solve time-fractional differential equations.
It effectively combines deep neural networks (DNNs) with approximation of fractional derivatives.
arXiv Detail & Related papers (2023-10-07T12:43:32Z) - Enforcing Continuous Physical Symmetries in Deep Learning Network for
Solving Partial Differential Equations [3.6317085868198467]
We introduce a new method, symmetry-enhanced physics informed neural network (SPINN) where the invariant surface conditions induced by the Lie symmetries of PDEs are embedded into the loss function of PINN.
We show that SPINN performs better than PINN with fewer training points and simpler architecture of neural network.
arXiv Detail & Related papers (2022-06-19T00:44:22Z) - Auto-PINN: Understanding and Optimizing Physics-Informed Neural
Architecture [77.59766598165551]
Physics-informed neural networks (PINNs) are revolutionizing science and engineering practice by bringing together the power of deep learning to bear on scientific computation.
Here, we propose Auto-PINN, which employs Neural Architecture Search (NAS) techniques to PINN design.
A comprehensive set of pre-experiments using standard PDE benchmarks allows us to probe the structure-performance relationship in PINNs.
arXiv Detail & Related papers (2022-05-27T03:24:31Z) - Revisiting PINNs: Generative Adversarial Physics-informed Neural
Networks and Point-weighting Method [70.19159220248805]
Physics-informed neural networks (PINNs) provide a deep learning framework for numerically solving partial differential equations (PDEs)
We propose the generative adversarial neural network (GA-PINN), which integrates the generative adversarial (GA) mechanism with the structure of PINNs.
Inspired from the weighting strategy of the Adaboost method, we then introduce a point-weighting (PW) method to improve the training efficiency of PINNs.
arXiv Detail & Related papers (2022-05-18T06:50:44Z) - Training Feedback Spiking Neural Networks by Implicit Differentiation on
the Equilibrium State [66.2457134675891]
Spiking neural networks (SNNs) are brain-inspired models that enable energy-efficient implementation on neuromorphic hardware.
Most existing methods imitate the backpropagation framework and feedforward architectures for artificial neural networks.
We propose a novel training method that does not rely on the exact reverse of the forward computation.
arXiv Detail & Related papers (2021-09-29T07:46:54Z) - Large-scale Neural Solvers for Partial Differential Equations [48.7576911714538]
Solving partial differential equations (PDE) is an indispensable part of many branches of science as many processes can be modelled in terms of PDEs.
Recent numerical solvers require manual discretization of the underlying equation as well as sophisticated, tailored code for distributed computing.
We examine the applicability of continuous, mesh-free neural solvers for partial differential equations, physics-informed neural networks (PINNs)
We discuss the accuracy of GatedPINN with respect to analytical solutions -- as well as state-of-the-art numerical solvers, such as spectral solvers.
arXiv Detail & Related papers (2020-09-08T13:26:51Z) - Provably Efficient Neural Estimation of Structural Equation Model: An
Adversarial Approach [144.21892195917758]
We study estimation in a class of generalized Structural equation models (SEMs)
We formulate the linear operator equation as a min-max game, where both players are parameterized by neural networks (NNs), and learn the parameters of these neural networks using a gradient descent.
For the first time we provide a tractable estimation procedure for SEMs based on NNs with provable convergence and without the need for sample splitting.
arXiv Detail & Related papers (2020-07-02T17:55:47Z) - Multipole Graph Neural Operator for Parametric Partial Differential
Equations [57.90284928158383]
One of the main challenges in using deep learning-based methods for simulating physical systems is formulating physics-based data.
We propose a novel multi-level graph neural network framework that captures interaction at all ranges with only linear complexity.
Experiments confirm our multi-graph network learns discretization-invariant solution operators to PDEs and can be evaluated in linear time.
arXiv Detail & Related papers (2020-06-16T21:56:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.