Federated Learning with Uncertainty-Based Client Clustering for
Fleet-Wide Fault Diagnosis
- URL: http://arxiv.org/abs/2304.13275v1
- Date: Wed, 26 Apr 2023 04:23:59 GMT
- Title: Federated Learning with Uncertainty-Based Client Clustering for
Fleet-Wide Fault Diagnosis
- Authors: Hao Lu, Adam Thelen, Olga Fink, Chao Hu, Simon Laflamme
- Abstract summary: Federated learning has emerged as a promising solution to leverage datasets from multiple operators to train a decentralized asset fault diagnosis model.
We propose a novel clustering-based FL algorithm where clients are clustered for federating based on dataset similarity.
- Score: 5.684489493030555
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Operators from various industries have been pushing the adoption of wireless
sensing nodes for industrial monitoring, and such efforts have produced
sizeable condition monitoring datasets that can be used to build diagnosis
algorithms capable of warning maintenance engineers of impending failure or
identifying current system health conditions. However, single operators may not
have sufficiently large fleets of systems or component units to collect
sufficient data to develop data-driven algorithms. Collecting a satisfactory
quantity of fault patterns for safety-critical systems is particularly
difficult due to the rarity of faults. Federated learning (FL) has emerged as a
promising solution to leverage datasets from multiple operators to train a
decentralized asset fault diagnosis model while maintaining data
confidentiality. However, there are still considerable obstacles to overcome
when it comes to optimizing the federation strategy without leaking sensitive
data and addressing the issue of client dataset heterogeneity. This is
particularly prevalent in fault diagnosis applications due to the high
diversity of operating conditions and system configurations. To address these
two challenges, we propose a novel clustering-based FL algorithm where clients
are clustered for federating based on dataset similarity. To quantify dataset
similarity between clients without explicitly sharing data, each client sets
aside a local test dataset and evaluates the other clients' model prediction
accuracy and uncertainty on this test dataset. Clients are then clustered for
FL based on relative prediction accuracy and uncertainty.
Related papers
- PeFAD: A Parameter-Efficient Federated Framework for Time Series Anomaly Detection [51.20479454379662]
We propose a.
Federated Anomaly Detection framework named PeFAD with the increasing privacy concerns.
We conduct extensive evaluations on four real datasets, where PeFAD outperforms existing state-of-the-art baselines by up to 28.74%.
arXiv Detail & Related papers (2024-06-04T13:51:08Z) - An Aggregation-Free Federated Learning for Tackling Data Heterogeneity [50.44021981013037]
Federated Learning (FL) relies on the effectiveness of utilizing knowledge from distributed datasets.
Traditional FL methods adopt an aggregate-then-adapt framework, where clients update local models based on a global model aggregated by the server from the previous training round.
We introduce FedAF, a novel aggregation-free FL algorithm.
arXiv Detail & Related papers (2024-04-29T05:55:23Z) - Fin-Fed-OD: Federated Outlier Detection on Financial Tabular Data [11.027356898413139]
Anomaly detection in real-world scenarios poses challenges due to dynamic and often unknown anomaly distributions.
This paper addresses the question of enhancing outlier detection within individual organizations without compromising data confidentiality.
We propose a novel method leveraging representation learning and federated learning techniques to improve the detection of unknown anomalies.
arXiv Detail & Related papers (2024-04-23T11:22:04Z) - FLASH: Federated Learning Across Simultaneous Heterogeneities [54.80435317208111]
FLASH(Federated Learning Across Simultaneous Heterogeneities) is a lightweight and flexible client selection algorithm.
It outperforms state-of-the-art FL frameworks under extensive sources of Heterogeneities.
It achieves substantial and consistent improvements over state-of-the-art baselines.
arXiv Detail & Related papers (2024-02-13T20:04:39Z) - Empowering HWNs with Efficient Data Labeling: A Clustered Federated
Semi-Supervised Learning Approach [2.046985601687158]
Clustered Federated Multitask Learning (CFL) has gained considerable attention as an effective strategy for overcoming statistical challenges.
We introduce a novel framework, Clustered Federated Semi-Supervised Learning (CFSL), designed for more realistic HWN scenarios.
Our results demonstrate that CFSL significantly improves upon key metrics such as testing accuracy, labeling accuracy, and labeling latency under varying proportions of labeled and unlabeled data.
arXiv Detail & Related papers (2024-01-19T11:47:49Z) - CADIS: Handling Cluster-skewed Non-IID Data in Federated Learning with
Clustered Aggregation and Knowledge DIStilled Regularization [3.3711670942444014]
Federated learning enables edge devices to train a global model collaboratively without exposing their data.
We tackle a new type of Non-IID data, called cluster-skewed non-IID, discovered in actual data sets.
We propose an aggregation scheme that guarantees equality between clusters.
arXiv Detail & Related papers (2023-02-21T02:53:37Z) - Rethinking Data Heterogeneity in Federated Learning: Introducing a New
Notion and Standard Benchmarks [65.34113135080105]
We show that not only the issue of data heterogeneity in current setups is not necessarily a problem but also in fact it can be beneficial for the FL participants.
Our observations are intuitive.
Our code is available at https://github.com/MMorafah/FL-SC-NIID.
arXiv Detail & Related papers (2022-09-30T17:15:19Z) - Uncertainty Minimization for Personalized Federated Semi-Supervised
Learning [15.123493340717303]
We propose a novel semi-supervised learning paradigm which allows partial-labeled or unlabeled clients to seek labeling assistance from data-related clients (helper agents)
Experiments show that our proposed method can obtain superior performance and more stable convergence than other related works with partial labeled data.
arXiv Detail & Related papers (2022-05-05T04:41:27Z) - Local Learning Matters: Rethinking Data Heterogeneity in Federated
Learning [61.488646649045215]
Federated learning (FL) is a promising strategy for performing privacy-preserving, distributed learning with a network of clients (i.e., edge devices)
arXiv Detail & Related papers (2021-11-28T19:03:39Z) - Auto-weighted Robust Federated Learning with Corrupted Data Sources [7.475348174281237]
Federated learning provides a communication-efficient and privacy-preserving training process.
Standard federated learning techniques that naively minimize an average loss function are vulnerable to data corruptions.
We propose Auto-weighted Robust Federated Learning (arfl) to provide robustness against corrupted data sources.
arXiv Detail & Related papers (2021-01-14T21:54:55Z) - Learning while Respecting Privacy and Robustness to Distributional
Uncertainties and Adversarial Data [66.78671826743884]
The distributionally robust optimization framework is considered for training a parametric model.
The objective is to endow the trained model with robustness against adversarially manipulated input data.
Proposed algorithms offer robustness with little overhead.
arXiv Detail & Related papers (2020-07-07T18:25:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.