Technical Note: Defining and Quantifying AND-OR Interactions for Faithful and Concise Explanation of DNNs
- URL: http://arxiv.org/abs/2304.13312v2
- Date: Thu, 1 Aug 2024 15:54:29 GMT
- Title: Technical Note: Defining and Quantifying AND-OR Interactions for Faithful and Concise Explanation of DNNs
- Authors: Mingjie Li, Quanshi Zhang,
- Abstract summary: We aim to explain a deep neural network (DNN) by quantifying the encoded interactions between input variables.
Specifically, we first rethink the definition of interactions, and then formally define faithfulness and conciseness for interaction-based explanation.
- Score: 24.099892982101398
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this technical note, we aim to explain a deep neural network (DNN) by quantifying the encoded interactions between input variables, which reflects the DNN's inference logic. Specifically, we first rethink the definition of interactions, and then formally define faithfulness and conciseness for interaction-based explanation. To this end, we propose two kinds of interactions, i.e., the AND interaction and the OR interaction. For faithfulness, we prove the uniqueness of the AND (OR) interaction in quantifying the effect of the AND (OR) relationship between input variables. Besides, based on AND-OR interactions, we design techniques to boost the conciseness of the explanation, while not hurting the faithfulness. In this way, the inference logic of a DNN can be faithfully and concisely explained by a set of symbolic concepts.
Related papers
- Two-Phase Dynamics of Interactions Explains the Starting Point of a DNN Learning Over-Fitted Features [68.3512123520931]
We investigate the dynamics of a deep neural network (DNN) learning interactions.
In this paper, we discover the DNN learns interactions in two phases.
The first phase mainly penalizes interactions of medium and high orders, and the second phase mainly learns interactions of gradually increasing orders.
arXiv Detail & Related papers (2024-05-16T17:13:25Z) - Defining and Extracting generalizable interaction primitives from DNNs [22.79131582164054]
We develop a new method to extract interactions that are shared by different deep neural networks (DNNs)
Experiments show that the extracted interactions can better reflect common knowledge shared by different DNNs.
arXiv Detail & Related papers (2024-01-29T17:21:41Z) - Neural-Logic Human-Object Interaction Detection [67.4993347702353]
We present L OGIC HOI, a new HOI detector that leverages neural-logic reasoning and Transformer to infer feasible interactions between entities.
Specifically, we modify the self-attention mechanism in vanilla Transformer, enabling it to reason over the human, action, object> triplet and constitute novel interactions.
We formulate these two properties in first-order logic and ground them into continuous space to constrain the learning process of our approach, leading to improved performance and zero-shot generalization capabilities.
arXiv Detail & Related papers (2023-11-16T11:47:53Z) - Explaining Interactions Between Text Spans [50.70253702800355]
Reasoning over spans of tokens from different parts of the input is essential for natural language understanding.
We introduce SpanEx, a dataset of human span interaction explanations for two NLU tasks: NLI and FC.
We then investigate the decision-making processes of multiple fine-tuned large language models in terms of the employed connections between spans.
arXiv Detail & Related papers (2023-10-20T13:52:37Z) - Modeling Hierarchical Reasoning Chains by Linking Discourse Units and
Key Phrases for Reading Comprehension [80.99865844249106]
We propose a holistic graph network (HGN) which deals with context at both discourse level and word level, as the basis for logical reasoning.
Specifically, node-level and type-level relations, which can be interpreted as bridges in the reasoning process, are modeled by a hierarchical interaction mechanism.
arXiv Detail & Related papers (2023-06-21T07:34:27Z) - Does a Neural Network Really Encode Symbolic Concepts? [24.099892982101398]
In this paper, we examine the trustworthiness of interaction concepts from four perspectives.
Extensive empirical studies have verified that a well-trained DNN usually encodes sparse, transferable, and discriminative concepts.
arXiv Detail & Related papers (2023-02-25T13:58:37Z) - Discovering and Explaining the Representation Bottleneck of DNNs [21.121270460158712]
This paper explores the bottleneck of feature representations of deep neural networks (DNNs)
We focus on the multi-order interaction between input variables, where the order represents the complexity of interactions.
We discover that a DNN is more likely to encode both too simple interactions and too complex interactions, but usually fails to learn interactions of intermediate complexity.
arXiv Detail & Related papers (2021-11-11T14:35:20Z) - Discrete-Valued Neural Communication [85.3675647398994]
We show that restricting the transmitted information among components to discrete representations is a beneficial bottleneck.
Even though individuals have different understandings of what a "cat" is based on their specific experiences, the shared discrete token makes it possible for communication among individuals to be unimpeded by individual differences in internal representation.
We extend the quantization mechanism from the Vector-Quantized Variational Autoencoder to multi-headed discretization with shared codebooks and use it for discrete-valued neural communication.
arXiv Detail & Related papers (2021-07-06T03:09:25Z) - Interpreting Multivariate Shapley Interactions in DNNs [33.67263820904767]
This paper aims to explain deep neural networks (DNNs) from the perspective of multivariate interactions.
In this paper, we define and quantify the significance of interactions among multiple input variables of the DNN.
arXiv Detail & Related papers (2020-10-10T17:02:51Z) - Architecture Disentanglement for Deep Neural Networks [174.16176919145377]
We introduce neural architecture disentanglement (NAD) to explain the inner workings of deep neural networks (DNNs)
NAD learns to disentangle a pre-trained DNN into sub-architectures according to independent tasks, forming information flows that describe the inference processes.
Results show that misclassified images have a high probability of being assigned to task sub-architectures similar to the correct ones.
arXiv Detail & Related papers (2020-03-30T08:34:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.