Automatic Localization and Detection Applicable to Robust Image
Watermarking Resisting against Camera Shooting
- URL: http://arxiv.org/abs/2304.13953v1
- Date: Thu, 27 Apr 2023 05:06:45 GMT
- Title: Automatic Localization and Detection Applicable to Robust Image
Watermarking Resisting against Camera Shooting
- Authors: Ming Liu
- Abstract summary: The proposed scheme is fully automatic, making it ideal for application scenarios.
The embedded watermark can be automatically and reliably extracted from the camera-shooting image in different scenarios.
- Score: 6.671754225593089
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Robust image watermarking that can resist camera shooting has become an
active research topic in recent years due to the increasing demand for
preventing sensitive information displayed on computer screens from being
captured. However, many mainstream schemes require human assistance during the
watermark detection process and cannot adapt to scenarios that require
processing a large number of images. Although deep learning-based schemes
enable end-to-end watermark embedding and detection, their limited
generalization ability makes them vulnerable to failure in complex scenarios.
In this paper, we propose a carefully crafted watermarking system that can
resist camera shooting. The proposed scheme deals with two important problems:
automatic watermark localization (AWL) and automatic watermark detection (AWD).
AWL automatically identifies the region of interest (RoI), which contains
watermark information, in the camera-shooting image by analyzing the local
statistical characteristics. Meanwhile, AWD extracts the hidden watermark from
the identified RoI after applying perspective correction. Compared with
previous works, the proposed scheme is fully automatic, making it ideal for
application scenarios. Furthermore, the proposed scheme is not limited to any
specific watermark embedding strategy, allowing for improvements in the
watermark embedding and extraction procedure. Extensive experimental results
and analysis show that the embedded watermark can be automatically and reliably
extracted from the camera-shooting image in different scenarios, demonstrating
the superiority and applicability of the proposed approach.
Related papers
- Can LLM Watermarks Robustly Prevent Unauthorized Knowledge Distillation? [75.99961894619986]
This paper investigates whether student models can acquire the capabilities of teacher models through knowledge distillation while avoiding watermark inheritance.
We propose two categories of watermark removal approaches: pre-distillation removal through untargeted and targeted training data paraphrasing (UP and TP), and post-distillation removal through inference-time watermark neutralization (WN)
arXiv Detail & Related papers (2025-02-17T09:34:19Z) - CLUE-MARK: Watermarking Diffusion Models using CLWE [13.010337595004708]
We introduce CLUE-Mark, the first provably undetectable watermarking scheme for diffusion models.
CLUE-Mark requires no changes to the model being watermarked, is computationally efficient, and is guaranteed to have no impact on model output quality.
Uniquely, CLUE-Mark cannot be detected nor removed by recent steganographic attacks.
arXiv Detail & Related papers (2024-11-18T10:03:01Z) - De-mark: Watermark Removal in Large Language Models [59.00698153097887]
We present De-mark, an advanced framework designed to remove n-gram-based watermarks effectively.
Our method utilizes a novel querying strategy, termed random selection probing, which aids in assessing the strength of the watermark.
arXiv Detail & Related papers (2024-10-17T17:42:10Z) - RAW: A Robust and Agile Plug-and-Play Watermark Framework for AI-Generated Images with Provable Guarantees [33.61946642460661]
This paper introduces a robust and agile watermark detection framework, dubbed as RAW.
We employ a classifier that is jointly trained with the watermark to detect the presence of the watermark.
We show that the framework provides provable guarantees regarding the false positive rate for misclassifying a watermarked image.
arXiv Detail & Related papers (2024-01-23T22:00:49Z) - Wide Flat Minimum Watermarking for Robust Ownership Verification of GANs [23.639074918667625]
We propose a novel multi-bit box-free watermarking method for GANs with improved robustness against white-box attacks.
The watermark is embedded by adding an extra watermarking loss term during GAN training.
We show that the presence of the watermark has a negligible impact on the quality of the generated images.
arXiv Detail & Related papers (2023-10-25T18:38:10Z) - Robustness of AI-Image Detectors: Fundamental Limits and Practical
Attacks [47.04650443491879]
We analyze the robustness of various AI-image detectors including watermarking and deepfake detectors.
We show that watermarking methods are vulnerable to spoofing attacks where the attacker aims to have real images identified as watermarked ones.
arXiv Detail & Related papers (2023-09-29T18:30:29Z) - Unbiased Watermark for Large Language Models [67.43415395591221]
This study examines how significantly watermarks impact the quality of model-generated outputs.
It is possible to integrate watermarks without affecting the output probability distribution.
The presence of watermarks does not compromise the performance of the model in downstream tasks.
arXiv Detail & Related papers (2023-09-22T12:46:38Z) - WMFormer++: Nested Transformer for Visible Watermark Removal via Implict
Joint Learning [68.00975867932331]
Existing watermark removal methods mainly rely on UNet with task-specific decoder branches.
We introduce an implicit joint learning paradigm to holistically integrate information from both branches.
The results demonstrate our approach's remarkable superiority, surpassing existing state-of-the-art methods by a large margin.
arXiv Detail & Related papers (2023-08-20T07:56:34Z) - Watermarking Images in Self-Supervised Latent Spaces [75.99287942537138]
We revisit watermarking techniques based on pre-trained deep networks, in the light of self-supervised approaches.
We present a way to embed both marks and binary messages into their latent spaces, leveraging data augmentation at marking time.
arXiv Detail & Related papers (2021-12-17T15:52:46Z) - Fine-tuning Is Not Enough: A Simple yet Effective Watermark Removal
Attack for DNN Models [72.9364216776529]
We propose a novel watermark removal attack from a different perspective.
We design a simple yet powerful transformation algorithm by combining imperceptible pattern embedding and spatial-level transformations.
Our attack can bypass state-of-the-art watermarking solutions with very high success rates.
arXiv Detail & Related papers (2020-09-18T09:14:54Z) - An Automated and Robust Image Watermarking Scheme Based on Deep Neural
Networks [8.765045867163648]
A robust and blind image watermarking scheme based on deep learning neural networks is proposed.
The robustness of the proposed scheme is achieved without requiring any prior knowledge or adversarial examples of possible attacks.
arXiv Detail & Related papers (2020-07-05T22:23:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.