Interweaved Graph and Attention Network for 3D Human Pose Estimation
- URL: http://arxiv.org/abs/2304.14045v1
- Date: Thu, 27 Apr 2023 09:21:15 GMT
- Title: Interweaved Graph and Attention Network for 3D Human Pose Estimation
- Authors: Ti Wang, Hong Liu, Runwei Ding, Wenhao Li, Yingxuan You, Xia Li
- Abstract summary: We propose a novel Interweaved Graph and Attention Network (IGANet)
IGANet allows bidirectional communications between graph convolutional networks (GCNs) and attentions.
We introduce an IGA module, where attentions are provided with local information from GCNs and GCNs are injected with global information from attentions.
- Score: 15.699524854176644
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Despite substantial progress in 3D human pose estimation from a single-view
image, prior works rarely explore global and local correlations, leading to
insufficient learning of human skeleton representations. To address this issue,
we propose a novel Interweaved Graph and Attention Network (IGANet) that allows
bidirectional communications between graph convolutional networks (GCNs) and
attentions. Specifically, we introduce an IGA module, where attentions are
provided with local information from GCNs and GCNs are injected with global
information from attentions. Additionally, we design a simple yet effective
U-shaped multi-layer perceptron (uMLP), which can capture multi-granularity
information for body joints. Extensive experiments on two popular benchmark
datasets (i.e. Human3.6M and MPI-INF-3DHP) are conducted to evaluate our
proposed method.The results show that IGANet achieves state-of-the-art
performance on both datasets. Code is available at
https://github.com/xiu-cs/IGANet.
Related papers
- Graph Triple Attention Network: A Decoupled Perspective [8.958483386270638]
Graph Transformers face two primary challenges: multi-view chaos and local-global chaos.
We propose a high-level decoupled perspective of GTs, breaking them down into three components and two interaction levels.
We design a decoupled graph triple attention network named DeGTA, which separately computes multi-view attentions and adaptively integrates multi-view local and global information.
arXiv Detail & Related papers (2024-08-14T16:29:07Z) - Representation Learning on Heterophilic Graph with Directional
Neighborhood Attention [8.493802098034255]
Graph Attention Network (GAT) is one of the most popular Graph Neural Network (GNN) architecture.
GAT lacks the ability to capture long-range and global graph information, leading to unsatisfactory performance on some datasets.
We propose Directional Graph Attention Network (DGAT) to combine the feature-based attention with the global directional information extracted from the graph topology.
arXiv Detail & Related papers (2024-03-03T10:59:16Z) - Iterative Graph Filtering Network for 3D Human Pose Estimation [5.177947445379688]
Graph convolutional networks (GCNs) have proven to be an effective approach for 3D human pose estimation.
In this paper, we introduce an iterative graph filtering framework for 3D human pose estimation.
Our approach builds upon the idea of iteratively solving graph filtering with Laplacian regularization.
arXiv Detail & Related papers (2023-07-29T20:46:44Z) - Learning Strong Graph Neural Networks with Weak Information [64.64996100343602]
We develop a principled approach to the problem of graph learning with weak information (GLWI)
We propose D$2$PT, a dual-channel GNN framework that performs long-range information propagation on the input graph with incomplete structure, but also on a global graph that encodes global semantic similarities.
arXiv Detail & Related papers (2023-05-29T04:51:09Z) - DigNet: Digging Clues from Local-Global Interactive Graph for
Aspect-level Sentiment Classification [0.685316573653194]
In aspect-level sentiment classification (ASC), state-of-the-art models encode either syntax graph or relation graph.
We design a novel local-global interactive graph, which marries their advantages by stitching the two graphs via interactive edges.
In this paper, we propose a novel neural network termed DigNet, whose core module is the stacked local-global interactive layers.
arXiv Detail & Related papers (2022-01-04T05:34:02Z) - Graph-Based 3D Multi-Person Pose Estimation Using Multi-View Images [79.70127290464514]
We decompose the task into two stages, i.e. person localization and pose estimation.
And we propose three task-specific graph neural networks for effective message passing.
Our approach achieves state-of-the-art performance on CMU Panoptic and Shelf datasets.
arXiv Detail & Related papers (2021-09-13T11:44:07Z) - Spatial-Temporal Correlation and Topology Learning for Person
Re-Identification in Videos [78.45050529204701]
We propose a novel framework to pursue discriminative and robust representation by modeling cross-scale spatial-temporal correlation.
CTL utilizes a CNN backbone and a key-points estimator to extract semantic local features from human body.
It explores a context-reinforced topology to construct multi-scale graphs by considering both global contextual information and physical connections of human body.
arXiv Detail & Related papers (2021-04-15T14:32:12Z) - An Adversarial Human Pose Estimation Network Injected with Graph
Structure [75.08618278188209]
In this paper, we design a novel generative adversarial network (GAN) to improve the localization accuracy of visible joints when some joints are invisible.
The network consists of two simple but efficient modules, Cascade Feature Network (CFN) and Graph Structure Network (GSN)
arXiv Detail & Related papers (2021-03-29T12:07:08Z) - PC-RGNN: Point Cloud Completion and Graph Neural Network for 3D Object
Detection [57.49788100647103]
LiDAR-based 3D object detection is an important task for autonomous driving.
Current approaches suffer from sparse and partial point clouds of distant and occluded objects.
In this paper, we propose a novel two-stage approach, namely PC-RGNN, dealing with such challenges by two specific solutions.
arXiv Detail & Related papers (2020-12-18T18:06:43Z) - Multi-Level Graph Convolutional Network with Automatic Graph Learning
for Hyperspectral Image Classification [63.56018768401328]
We propose a Multi-level Graph Convolutional Network (GCN) with Automatic Graph Learning method (MGCN-AGL) for HSI classification.
By employing attention mechanism to characterize the importance among spatially neighboring regions, the most relevant information can be adaptively incorporated to make decisions.
Our MGCN-AGL encodes the long range dependencies among image regions based on the expressive representations that have been produced at local level.
arXiv Detail & Related papers (2020-09-19T09:26:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.