ChatGPT vs State-of-the-Art Models: A Benchmarking Study in Keyphrase
Generation Task
- URL: http://arxiv.org/abs/2304.14177v2
- Date: Thu, 29 Jun 2023 13:40:42 GMT
- Title: ChatGPT vs State-of-the-Art Models: A Benchmarking Study in Keyphrase
Generation Task
- Authors: Roberto Mart\'inez-Cruz, Alvaro J. L\'opez-L\'opez, Jos\'e Portela
- Abstract summary: Transformer-based language models, including ChatGPT, have demonstrated exceptional performance in various natural language generation tasks.
This study compares ChatGPT's keyphrase generation performance with state-of-the-art models, while also testing its potential as a solution for two significant challenges in the field.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Transformer-based language models, including ChatGPT, have demonstrated
exceptional performance in various natural language generation tasks. However,
there has been limited research evaluating ChatGPT's keyphrase generation
ability, which involves identifying informative phrases that accurately reflect
a document's content. This study seeks to address this gap by comparing
ChatGPT's keyphrase generation performance with state-of-the-art models, while
also testing its potential as a solution for two significant challenges in the
field: domain adaptation and keyphrase generation from long documents. We
conducted experiments on six publicly available datasets from scientific
articles and news domains, analyzing performance on both short and long
documents. Our results show that ChatGPT outperforms current state-of-the-art
models in all tested datasets and environments, generating high-quality
keyphrases that adapt well to diverse domains and document lengths.
Related papers
- Retrieval is Accurate Generation [99.24267226311157]
We introduce a novel method that selects context-aware phrases from a collection of supporting documents.
Our model achieves the best performance and the lowest latency among several retrieval-augmented baselines.
arXiv Detail & Related papers (2024-02-27T14:16:19Z) - Cross-Domain Robustness of Transformer-based Keyphrase Generation [1.8492669447784602]
A list of keyphrases is an important element of a text in databases and repositories of electronic documents.
In our experiments, abstractive text summarization models fine-tuned for keyphrase generation show quite high results for a target text corpus.
We present an evaluation of the fine-tuned BART models for the keyphrase selection task across six benchmark corpora.
arXiv Detail & Related papers (2023-12-17T12:27:15Z) - On the Generalization of Training-based ChatGPT Detection Methods [33.46128880100525]
ChatGPT is one of the most popular language models which achieve amazing performance on various natural language tasks.
There is also an urgent need to detect the texts generated ChatGPT from human written.
arXiv Detail & Related papers (2023-10-02T16:13:08Z) - GPT-Sentinel: Distinguishing Human and ChatGPT Generated Content [27.901155229342375]
We present a novel approach for detecting ChatGPT-generated vs. human-written text using language models.
Our models achieved remarkable results, with an accuracy of over 97% on the test dataset, as evaluated through various metrics.
arXiv Detail & Related papers (2023-05-13T17:12:11Z) - Exploring the Trade-Offs: Unified Large Language Models vs Local
Fine-Tuned Models for Highly-Specific Radiology NLI Task [49.50140712943701]
We evaluate the performance of ChatGPT/GPT-4 on a radiology NLI task and compare it to other models fine-tuned specifically on task-related data samples.
We also conduct a comprehensive investigation on ChatGPT/GPT-4's reasoning ability by introducing varying levels of inference difficulty.
arXiv Detail & Related papers (2023-04-18T17:21:48Z) - ChatGPT Beyond English: Towards a Comprehensive Evaluation of Large
Language Models in Multilingual Learning [70.57126720079971]
Large language models (LLMs) have emerged as the most important breakthroughs in natural language processing (NLP)
This paper evaluates ChatGPT on 7 different tasks, covering 37 diverse languages with high, medium, low, and extremely low resources.
Compared to the performance of previous models, our extensive experimental results demonstrate a worse performance of ChatGPT for different NLP tasks and languages.
arXiv Detail & Related papers (2023-04-12T05:08:52Z) - Is ChatGPT A Good Keyphrase Generator? A Preliminary Study [51.863368917344864]
ChatGPT has recently garnered significant attention from the computational linguistics community.
We evaluate its performance in various aspects, including keyphrase generation prompts, keyphrase generation diversity, and long document understanding.
We find that ChatGPT performs exceptionally well on all six candidate prompts, with minor performance differences observed across the datasets.
arXiv Detail & Related papers (2023-03-23T02:50:38Z) - Exploring the Limits of ChatGPT for Query or Aspect-based Text
Summarization [28.104696513516117]
Large language models (LLMs) like GPT3 and ChatGPT have recently created significant interest in using these models for text summarization tasks.
Recent studies citegoyal2022news, zhang2023benchmarking have shown that LLMs-generated news summaries are already on par with humans.
Our experiments reveal that ChatGPT's performance is comparable to traditional fine-tuning methods in terms of Rouge scores.
arXiv Detail & Related papers (2023-02-16T04:41:30Z) - Towards Document-Level Paraphrase Generation with Sentence Rewriting and
Reordering [88.08581016329398]
We propose CoRPG (Coherence Relationship guided Paraphrase Generation) for document-level paraphrase generation.
We use graph GRU to encode the coherence relationship graph and get the coherence-aware representation for each sentence.
Our model can generate document paraphrase with more diversity and semantic preservation.
arXiv Detail & Related papers (2021-09-15T05:53:40Z) - Select, Extract and Generate: Neural Keyphrase Generation with
Layer-wise Coverage Attention [75.44523978180317]
We propose emphSEG-Net, a neural keyphrase generation model that is composed of two major components.
The experimental results on seven keyphrase generation benchmarks from scientific and web documents demonstrate that SEG-Net outperforms the state-of-the-art neural generative methods by a large margin.
arXiv Detail & Related papers (2020-08-04T18:00:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.