Thinking beyond chatbots' threat to education: Visualizations to
elucidate the writing and coding process
- URL: http://arxiv.org/abs/2304.14342v1
- Date: Tue, 25 Apr 2023 22:11:29 GMT
- Title: Thinking beyond chatbots' threat to education: Visualizations to
elucidate the writing and coding process
- Authors: Badri Adhikari
- Abstract summary: The landscape of educational practices for teaching and learning languages has been predominantly centered around outcome-driven approaches.
The recent accessibility of large language models has thoroughly disrupted these approaches.
This work presents a new set of visualization tools to summarize the inherent and taught capabilities of a learner's writing or programming process.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The landscape of educational practices for teaching and learning languages
has been predominantly centered around outcome-driven approaches. The recent
accessibility of large language models has thoroughly disrupted these
approaches. As we transform our language teaching and learning practices to
account for this disruption, it is important to note that language learning
plays a pivotal role in developing human intelligence. Writing and computer
programming are two essential skills integral to our education systems. What
and how we write shapes our thinking and sets us on the path of self-directed
learning. While most educators understand that `process' and `product' are both
important and inseparable, in most educational settings, providing constructive
feedback on a learner's formative process is challenging. For instance, it is
straightforward in computer programming to assess whether a learner-submitted
code runs. However, evaluating the learner's creative process and providing
meaningful feedback on the process can be challenging. To address this
long-standing issue in education (and learning), this work presents a new set
of visualization tools to summarize the inherent and taught capabilities of a
learner's writing or programming process. These interactive Process
Visualizations (PVs) provide insightful, empowering, and personalized
process-oriented feedback to the learners. The toolbox is ready to be tested by
educators and learners and is publicly available at www.processfeedback.org.
Focusing on providing feedback on a learner's process--from self, peers, and
educators--will facilitate learners' ability to acquire higher-order skills
such as self-directed learning and metacognition.
Related papers
- Integrating Cognitive AI with Generative Models for Enhanced Question Answering in Skill-based Learning [3.187381965457262]
This paper proposes a novel approach that merges Cognitive AI and Generative AI to address these challenges.
We employ a structured knowledge representation, the TMK (Task-Method-Knowledge) model, to encode skills taught in an online Knowledge-based AI course.
arXiv Detail & Related papers (2024-07-28T04:21:22Z) - WIP: A Unit Testing Framework for Self-Guided Personalized Online Robotics Learning [3.613641107321095]
This paper focuses on creating a system for unit testing while integrating it into the course workflow.
In line with the framework's personalized student-centered approach, this method makes it easier for students to revise, and debug their programming work.
The course workflow updated to include unit tests will strengthen the learning environment and make it more interactive so that students can learn how to program robots in a self-guided fashion.
arXiv Detail & Related papers (2024-05-18T00:56:46Z) - Scaffolding Language Learning via Multi-modal Tutoring Systems with Pedagogical Instructions [34.760230622675365]
Intelligent tutoring systems (ITSs) imitate human tutors and aim to provide customized instructions or feedback to learners.
With the emergence of generative artificial intelligence, large language models (LLMs) entitle the systems to complex and coherent conversational interactions.
We investigate how pedagogical instructions facilitate the scaffolding in ITSs, by conducting a case study on guiding children to describe images for language learning.
arXiv Detail & Related papers (2024-04-04T13:22:28Z) - Enhancing Instructional Quality: Leveraging Computer-Assisted Textual
Analysis to Generate In-Depth Insights from Educational Artifacts [13.617709093240231]
We examine how artificial intelligence (AI) and machine learning (ML) methods can analyze educational content, teacher discourse, and student responses to foster instructional improvement.
We identify key areas where AI/ML integration offers significant advantages, including teacher coaching, student support, and content development.
This paper emphasizes the importance of aligning AI/ML technologies with pedagogical goals to realize their full potential in educational settings.
arXiv Detail & Related papers (2024-03-06T18:29:18Z) - YODA: Teacher-Student Progressive Learning for Language Models [82.0172215948963]
This paper introduces YODA, a teacher-student progressive learning framework.
It emulates the teacher-student education process to improve the efficacy of model fine-tuning.
Experiments show that training LLaMA2 with data from YODA improves SFT with significant performance gain.
arXiv Detail & Related papers (2024-01-28T14:32:15Z) - Anticipating User Needs: Insights from Design Fiction on Conversational Agents for Computational Thinking [10.363782876965221]
We envision a conversational agent that guides students stepwise through exercises, tuning its method of guidance with an awareness of the educational background, skills and deficits, and learning preferences.
The insights obtained in this paper can guide future implementations of tutoring agents oriented toward teaching computational thinking and computer programming.
arXiv Detail & Related papers (2023-11-12T16:19:03Z) - Teacher Perception of Automatically Extracted Grammar Concepts for L2
Language Learning [66.79173000135717]
We apply this work to teaching two Indian languages, Kannada and Marathi, which do not have well-developed resources for second language learning.
We extract descriptions from a natural text corpus that answer questions about morphosyntax (learning of word order, agreement, case marking, or word formation) and semantics (learning of vocabulary).
We enlist the help of language educators from schools in North America to perform a manual evaluation, who find the materials have potential to be used for their lesson preparation and learner evaluation.
arXiv Detail & Related papers (2023-10-27T18:17:29Z) - Empowering Private Tutoring by Chaining Large Language Models [87.76985829144834]
This work explores the development of a full-fledged intelligent tutoring system powered by state-of-the-art large language models (LLMs)
The system is into three inter-connected core processes-interaction, reflection, and reaction.
Each process is implemented by chaining LLM-powered tools along with dynamically updated memory modules.
arXiv Detail & Related papers (2023-09-15T02:42:03Z) - Giving Feedback on Interactive Student Programs with Meta-Exploration [74.5597783609281]
Developing interactive software, such as websites or games, is a particularly engaging way to learn computer science.
Standard approaches require instructors to manually grade student-implemented interactive programs.
Online platforms that serve millions, like Code.org, are unable to provide any feedback on assignments for implementing interactive programs.
arXiv Detail & Related papers (2022-11-16T10:00:23Z) - Teacher Perception of Automatically Extracted Grammar Concepts for L2
Language Learning [91.49622922938681]
We present an automatic framework that automatically discovers and visualizing descriptions of different aspects of grammar.
Specifically, we extract descriptions from a natural text corpus that answer questions about morphosyntax and semantics.
We apply this method for teaching the Indian languages, Kannada and Marathi, which, unlike English, do not have well-developed pedagogical resources.
arXiv Detail & Related papers (2022-06-10T14:52:22Z) - Teachable Reinforcement Learning via Advice Distillation [161.43457947665073]
We propose a new supervision paradigm for interactive learning based on "teachable" decision-making systems that learn from structured advice provided by an external teacher.
We show that agents that learn from advice can acquire new skills with significantly less human supervision than standard reinforcement learning algorithms.
arXiv Detail & Related papers (2022-03-19T03:22:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.