An Adaptive Policy to Employ Sharpness-Aware Minimization
- URL: http://arxiv.org/abs/2304.14647v1
- Date: Fri, 28 Apr 2023 06:23:32 GMT
- Title: An Adaptive Policy to Employ Sharpness-Aware Minimization
- Authors: Weisen Jiang, Hansi Yang, Yu Zhang, James Kwok
- Abstract summary: Sharpness-aware minimization (SAM) searches for flat minima by min-max optimization.
Recent state-of-the-arts reduce the fraction of SAM updates.
Two efficient algorithms, AE-SAM and AE-LookSAM, are proposed.
- Score: 5.5347134457499845
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Sharpness-aware minimization (SAM), which searches for flat minima by min-max
optimization, has been shown to be useful in improving model generalization.
However, since each SAM update requires computing two gradients, its
computational cost and training time are both doubled compared to standard
empirical risk minimization (ERM). Recent state-of-the-arts reduce the fraction
of SAM updates and thus accelerate SAM by switching between SAM and ERM updates
randomly or periodically. In this paper, we design an adaptive policy to employ
SAM based on the loss landscape geometry. Two efficient algorithms, AE-SAM and
AE-LookSAM, are proposed. We theoretically show that AE-SAM has the same
convergence rate as SAM. Experimental results on various datasets and
architectures demonstrate the efficiency and effectiveness of the adaptive
policy.
Related papers
- SAMPa: Sharpness-aware Minimization Parallelized [51.668052890249726]
Sharpness-aware (SAM) has been shown to improve the generalization of neural networks.
Each SAM update requires emphsequentially computing two gradients, effectively doubling the per-iteration cost.
We propose a simple modification of SAM, termed SAMPa, which allows us to fully parallelize the two gradient computations.
arXiv Detail & Related papers (2024-10-14T16:21:23Z) - Bilateral Sharpness-Aware Minimization for Flatter Minima [61.17349662062522]
Sharpness-Aware Minimization (SAM) enhances generalization by reducing a Max-Sharpness (MaxS)
In this paper, we propose to utilize the difference between the training loss and the minimum loss over the neighborhood surrounding the current weight, which we denote as Min-Sharpness (MinS)
By merging MaxS and MinS, we created a better FI that indicates a flatter direction during the optimization. Specially, we combine this FI with SAM into the proposed Bilateral SAM (BSAM) which finds a more flatter minimum than that of SAM.
arXiv Detail & Related papers (2024-09-20T03:01:13Z) - Asymptotic Unbiased Sample Sampling to Speed Up Sharpness-Aware Minimization [17.670203551488218]
We propose Asymptotic Unbiased Sampling to accelerate Sharpness-Aware Minimization (AUSAM)
AUSAM maintains the model's generalization capacity while significantly enhancing computational efficiency.
As a plug-and-play, architecture-agnostic method, our approach consistently accelerates SAM across a range of tasks and networks.
arXiv Detail & Related papers (2024-06-12T08:47:44Z) - Systematic Investigation of Sparse Perturbed Sharpness-Aware
Minimization Optimizer [158.2634766682187]
Deep neural networks often suffer from poor generalization due to complex and non- unstructured loss landscapes.
SharpnessAware Minimization (SAM) is a popular solution that smooths the loss by minimizing the change of landscape when adding a perturbation.
In this paper, we propose Sparse SAM (SSAM), an efficient and effective training scheme that achieves perturbation by a binary mask.
arXiv Detail & Related papers (2023-06-30T09:33:41Z) - mSAM: Micro-Batch-Averaged Sharpness-Aware Minimization [20.560184120992094]
Sharpness-Aware Minimization technique modifies the fundamental loss function that steers gradient descent methods toward flatter minima.
We extend a recently developed and well-studied general framework for flatness analysis to theoretically show that SAM achieves flatter minima than SGD, and mSAM achieves even flatter minima than SAM.
arXiv Detail & Related papers (2023-02-19T23:27:12Z) - Improved Deep Neural Network Generalization Using m-Sharpness-Aware
Minimization [14.40189851070842]
Sharpness-Aware Minimization (SAM) modifies the underlying loss function to guide descent methods towards flatter minima.
Recent work suggests that mSAM can outperform SAM in terms of test accuracy.
This paper presents a comprehensive empirical evaluation of mSAM on various tasks and datasets.
arXiv Detail & Related papers (2022-12-07T00:37:55Z) - Make Sharpness-Aware Minimization Stronger: A Sparsified Perturbation
Approach [132.37966970098645]
One of the popular solutions is Sharpness-Aware Minimization (SAM), which minimizes the change of weight loss when adding a perturbation.
In this paper, we propose an efficient effective training scheme coined as Sparse SAM (SSAM), which achieves double overhead of common perturbations.
In addition, we theoretically prove that S can converge at the same SAM, i.e., $O(log T/sqrtTTTTTTTTTTTTTTTTT
arXiv Detail & Related papers (2022-10-11T06:30:10Z) - Towards Efficient and Scalable Sharpness-Aware Minimization [81.22779501753695]
We propose a novel algorithm LookSAM that only periodically calculates the inner gradient ascent.
LookSAM achieves similar accuracy gains to SAM while being tremendously faster.
We are the first to successfully scale up the batch size when training Vision Transformers (ViTs)
arXiv Detail & Related papers (2022-03-05T11:53:37Z) - Efficient Sharpness-aware Minimization for Improved Training of Neural
Networks [146.2011175973769]
This paper proposes Efficient Sharpness Aware Minimizer (M) which boosts SAM s efficiency at no cost to its generalization performance.
M includes two novel and efficient training strategies-StochasticWeight Perturbation and Sharpness-Sensitive Data Selection.
We show, via extensive experiments on the CIFAR and ImageNet datasets, that ESAM enhances the efficiency over SAM from requiring 100% extra computations to 40% vis-a-vis bases.
arXiv Detail & Related papers (2021-10-07T02:20:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.