RexUIE: A Recursive Method with Explicit Schema Instructor for Universal
Information Extraction
- URL: http://arxiv.org/abs/2304.14770v2
- Date: Wed, 18 Oct 2023 02:30:55 GMT
- Title: RexUIE: A Recursive Method with Explicit Schema Instructor for Universal
Information Extraction
- Authors: Chengyuan Liu, Fubang Zhao, Yangyang Kang, Jingyuan Zhang, Xiang Zhou,
Changlong Sun, Kun Kuang, Fei Wu
- Abstract summary: Universal Information Extraction is an area of interest due to the challenges posed by varying targets, heterogeneous structures, and demand-specific schemas.
Previous works have only achieved limited success by unifying a few tasks, such as Named Entity Recognition (NER) and Relation Extraction (RE)
In this paper, we redefine the authentic UIE with a formal formulation that encompasses almost all extraction schemas.
- Score: 47.89362854989252
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Universal Information Extraction (UIE) is an area of interest due to the
challenges posed by varying targets, heterogeneous structures, and
demand-specific schemas. However, previous works have only achieved limited
success by unifying a few tasks, such as Named Entity Recognition (NER) and
Relation Extraction (RE), which fall short of being authentic UIE models
particularly when extracting other general schemas such as quadruples and
quintuples. Additionally, these models used an implicit structural schema
instructor, which could lead to incorrect links between types, hindering the
model's generalization and performance in low-resource scenarios. In this
paper, we redefine the authentic UIE with a formal formulation that encompasses
almost all extraction schemas. To the best of our knowledge, we are the first
to introduce UIE for any kind of schemas. In addition, we propose RexUIE, which
is a Recursive Method with Explicit Schema Instructor for UIE. To avoid
interference between different types, we reset the position ids and attention
mask matrices. RexUIE shows strong performance under both full-shot and
few-shot settings and achieves State-of-the-Art results on the tasks of
extracting complex schemas.
Related papers
- RexUniNLU: Recursive Method with Explicit Schema Instructor for Universal NLU [45.85420719025781]
There is no existing encoder-based model that can unify and CLS tasks from this perspective.
We have proposed a Recursive Method with Explicit Instructor for Universal NLU.
We introduce RexUniNLU, an universal NLU solution that employs explicit schema constraints for IE and CLS.
arXiv Detail & Related papers (2024-09-09T01:59:29Z) - AutoRE: Document-Level Relation Extraction with Large Language Models [27.426703757501507]
We introduce AutoRE, an end-to-end DocRE model that adopts a novel RE extraction paradigm named RHF (Relation-Head-Facts)
Unlike existing approaches, AutoRE does not rely on the assumption of known relation options, making it more reflective of real-world scenarios.
Our experiments on the RE-DocRED dataset showcase AutoRE's best performance, achieving state-of-the-art results.
arXiv Detail & Related papers (2024-03-21T23:48:21Z) - Learning to Extract Structured Entities Using Language Models [52.281701191329]
Recent advances in machine learning have significantly impacted the field of information extraction.
We reformulate the task to be entity-centric, enabling the use of diverse metrics.
We contribute to the field by introducing Structured Entity Extraction and proposing the Approximate Entity Set OverlaP metric.
arXiv Detail & Related papers (2024-02-06T22:15:09Z) - GIELLM: Japanese General Information Extraction Large Language Model
Utilizing Mutual Reinforcement Effect [0.0]
We introduce the General Information Extraction Large Language Model (GIELLM)
It integrates text Classification, Sentiment Analysis, Named Entity Recognition, Relation Extraction, and Event Extraction using a uniform input-output schema.
This innovation marks the first instance of a model simultaneously handling such a diverse array of IE subtasks.
arXiv Detail & Related papers (2023-11-12T13:30:38Z) - Universal Information Extraction as Unified Semantic Matching [54.19974454019611]
We decouple information extraction into two abilities, structuring and conceptualizing, which are shared by different tasks and schemas.
Based on this paradigm, we propose to universally model various IE tasks with Unified Semantic Matching framework.
In this way, USM can jointly encode schema and input text, uniformly extract substructures in parallel, and controllably decode target structures on demand.
arXiv Detail & Related papers (2023-01-09T11:51:31Z) - Enriching Relation Extraction with OpenIE [70.52564277675056]
Relation extraction (RE) is a sub-discipline of information extraction (IE)
In this work, we explore how recent approaches for open information extraction (OpenIE) may help to improve the task of RE.
Our experiments over two annotated corpora, KnowledgeNet and FewRel, demonstrate the improved accuracy of our enriched models.
arXiv Detail & Related papers (2022-12-19T11:26:23Z) - Unified Structure Generation for Universal Information Extraction [58.89057387608414]
UIE can universally model different IE tasks, adaptively generate targeted structures, and collaboratively learn general IE abilities from different knowledge sources.
Experiments show that UIE achieved the state-of-the-art performance on 4 IE tasks, 13 datasets, and on all supervised, low-resource, and few-shot settings.
arXiv Detail & Related papers (2022-03-23T08:49:29Z) - Abstractive Query Focused Summarization with Query-Free Resources [60.468323530248945]
In this work, we consider the problem of leveraging only generic summarization resources to build an abstractive QFS system.
We propose Marge, a Masked ROUGE Regression framework composed of a novel unified representation for summaries and queries.
Despite learning from minimal supervision, our system achieves state-of-the-art results in the distantly supervised setting.
arXiv Detail & Related papers (2020-12-29T14:39:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.