Interpreting Vision and Language Generative Models with Semantic Visual
Priors
- URL: http://arxiv.org/abs/2304.14986v2
- Date: Thu, 4 May 2023 15:25:00 GMT
- Title: Interpreting Vision and Language Generative Models with Semantic Visual
Priors
- Authors: Michele Cafagna, Lina M. Rojas-Barahona, Kees van Deemter, Albert Gatt
- Abstract summary: We develop a framework based on SHAP that allows for generating meaningful explanations leveraging the meaning representation of the output sequence as a whole.
We demonstrate that our method generates semantically more expressive explanations than traditional methods at a lower compute cost.
- Score: 3.3772986620114374
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: When applied to Image-to-text models, interpretability methods often provide
token-by-token explanations namely, they compute a visual explanation for each
token of the generated sequence. Those explanations are expensive to compute
and unable to comprehensively explain the model's output. Therefore, these
models often require some sort of approximation that eventually leads to
misleading explanations. We develop a framework based on SHAP, that allows for
generating comprehensive, meaningful explanations leveraging the meaning
representation of the output sequence as a whole. Moreover, by exploiting
semantic priors in the visual backbone, we extract an arbitrary number of
features that allows the efficient computation of Shapley values on large-scale
models, generating at the same time highly meaningful visual explanations. We
demonstrate that our method generates semantically more expressive explanations
than traditional methods at a lower compute cost and that it can be generalized
over other explainability methods.
Related papers
- Selective Explanations [14.312717332216073]
A machine learning model is trained to predict feature attribution scores with only one inference.
Despite their efficiency, amortized explainers can produce inaccurate predictions and misleading explanations.
We propose selective explanations, a novel feature attribution method that detects when amortized explainers generate low-quality explanations.
arXiv Detail & Related papers (2024-05-29T23:08:31Z) - Diffexplainer: Towards Cross-modal Global Explanations with Diffusion Models [51.21351775178525]
DiffExplainer is a novel framework that, leveraging language-vision models, enables multimodal global explainability.
It employs diffusion models conditioned on optimized text prompts, synthesizing images that maximize class outputs.
The analysis of generated visual descriptions allows for automatic identification of biases and spurious features.
arXiv Detail & Related papers (2024-04-03T10:11:22Z) - Causal Generative Explainers using Counterfactual Inference: A Case
Study on the Morpho-MNIST Dataset [5.458813674116228]
We present a generative counterfactual inference approach to study the influence of visual features as well as causal factors.
We employ visual explanation methods from OmnixAI open source toolkit to compare them with our proposed methods.
This finding suggests that our methods are well-suited for generating highly interpretable counterfactual explanations on causal datasets.
arXiv Detail & Related papers (2024-01-21T04:07:48Z) - Explainability for Large Language Models: A Survey [59.67574757137078]
Large language models (LLMs) have demonstrated impressive capabilities in natural language processing.
This paper introduces a taxonomy of explainability techniques and provides a structured overview of methods for explaining Transformer-based language models.
arXiv Detail & Related papers (2023-09-02T22:14:26Z) - Grouping Shapley Value Feature Importances of Random Forests for
explainable Yield Prediction [0.8543936047647136]
We explain the concept of Shapley values directly computed for groups of features and introduce an algorithm to compute them efficiently on tree structures.
We provide a blueprint for designing swarm plots that combine many local explanations for global understanding.
arXiv Detail & Related papers (2023-04-14T13:03:33Z) - Learning with Explanation Constraints [91.23736536228485]
We provide a learning theoretic framework to analyze how explanations can improve the learning of our models.
We demonstrate the benefits of our approach over a large array of synthetic and real-world experiments.
arXiv Detail & Related papers (2023-03-25T15:06:47Z) - Understanding Post-hoc Explainers: The Case of Anchors [6.681943980068051]
We present a theoretical analysis of a rule-based interpretability method that highlights a small set of words to explain a text's decision.
After formalizing its algorithm and providing useful insights, we demonstrate mathematically that Anchors produces meaningful results.
arXiv Detail & Related papers (2023-03-15T17:56:34Z) - Combining Counterfactuals With Shapley Values To Explain Image Models [13.671174461441304]
We develop a pipeline to generate counterfactuals and estimate Shapley values.
We obtain contrastive and interpretable explanations with strong axiomatic guarantees.
arXiv Detail & Related papers (2022-06-14T18:23:58Z) - Explainability in Process Outcome Prediction: Guidelines to Obtain
Interpretable and Faithful Models [77.34726150561087]
We define explainability through the interpretability of the explanations and the faithfulness of the explainability model in the field of process outcome prediction.
This paper contributes a set of guidelines named X-MOP which allows selecting the appropriate model based on the event log specifications.
arXiv Detail & Related papers (2022-03-30T05:59:50Z) - Interpreting Language Models with Contrastive Explanations [99.7035899290924]
Language models must consider various features to predict a token, such as its part of speech, number, tense, or semantics.
Existing explanation methods conflate evidence for all these features into a single explanation, which is less interpretable for human understanding.
We show that contrastive explanations are quantifiably better than non-contrastive explanations in verifying major grammatical phenomena.
arXiv Detail & Related papers (2022-02-21T18:32:24Z) - The Struggles of Feature-Based Explanations: Shapley Values vs. Minimal
Sufficient Subsets [61.66584140190247]
We show that feature-based explanations pose problems even for explaining trivial models.
We show that two popular classes of explainers, Shapley explainers and minimal sufficient subsets explainers, target fundamentally different types of ground-truth explanations.
arXiv Detail & Related papers (2020-09-23T09:45:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.