Deep Ensembles to Improve Uncertainty Quantification of Statistical
Downscaling Models under Climate Change Conditions
- URL: http://arxiv.org/abs/2305.00975v1
- Date: Thu, 27 Apr 2023 19:53:18 GMT
- Title: Deep Ensembles to Improve Uncertainty Quantification of Statistical
Downscaling Models under Climate Change Conditions
- Authors: Jose Gonz\'alez-Abad, Jorge Ba\~no-Medina
- Abstract summary: We propose deep ensembles as a simple method to improve the uncertainty quantification of statistical downscaling models.
Deep ensembles allow for a better risk assessment, highly demanded by sectoral applications to tackle climate change.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recently, deep learning has emerged as a promising tool for statistical
downscaling, the set of methods for generating high-resolution climate fields
from coarse low-resolution variables. Nevertheless, their ability to generalize
to climate change conditions remains questionable, mainly due to the
stationarity assumption. We propose deep ensembles as a simple method to
improve the uncertainty quantification of statistical downscaling models. By
better capturing uncertainty, statistical downscaling models allow for superior
planning against extreme weather events, a source of various negative social
and economic impacts. Since no observational future data exists, we rely on a
pseudo reality experiment to assess the suitability of deep ensembles for
quantifying the uncertainty of climate change projections. Deep ensembles allow
for a better risk assessment, highly demanded by sectoral applications to
tackle climate change.
Related papers
- Towards Kriging-informed Conditional Diffusion for Regional Sea-Level Data Downscaling [3.8178633709015446]
Given coarser-resolution projections from global climate models or satellite data, the downscaling problem aims to estimate finer-resolution regional climate data.
This problem is societally crucial for effective adaptation, mitigation, and resilience against significant risks from climate change.
We propose a novel Kriging-informed Conditional Diffusion Probabilistic Model (Ki-CDPM) to capture spatial variability while preserving fine-scale features.
arXiv Detail & Related papers (2024-10-21T04:24:10Z) - Efficient Localized Adaptation of Neural Weather Forecasting: A Case Study in the MENA Region [62.09891513612252]
We focus on limited-area modeling and train our model specifically for localized region-level downstream tasks.
We consider the MENA region due to its unique climatic challenges, where accurate localized weather forecasting is crucial for managing water resources, agriculture and mitigating the impacts of extreme weather events.
Our study aims to validate the effectiveness of integrating parameter-efficient fine-tuning (PEFT) methodologies, specifically Low-Rank Adaptation (LoRA) and its variants, to enhance forecast accuracy, as well as training speed, computational resource utilization, and memory efficiency in weather and climate modeling for specific regions.
arXiv Detail & Related papers (2024-09-11T19:31:56Z) - Quantifying uncertainty in climate projections with conformal ensembles [0.0]
Conformal ensembling is a new approach to uncertainty quantification in climate projections based on conformal inference to reduce projection uncertainty.
It can be applied to any climatic variable using any ensemble analysis method.
Experiments show that it is effective when conditioning future projections on historical reanalysis data.
arXiv Detail & Related papers (2024-08-13T05:23:55Z) - ExtremeCast: Boosting Extreme Value Prediction for Global Weather Forecast [57.6987191099507]
We introduce Exloss, a novel loss function that performs asymmetric optimization and highlights extreme values to obtain accurate extreme weather forecast.
We also introduce ExBooster, which captures the uncertainty in prediction outcomes by employing multiple random samples.
Our solution can achieve state-of-the-art performance in extreme weather prediction, while maintaining the overall forecast accuracy comparable to the top medium-range forecast models.
arXiv Detail & Related papers (2024-02-02T10:34:13Z) - CMIP X-MOS: Improving Climate Models with Extreme Model Output
Statistics [40.517778024431244]
We introduce Extreme Model Output Statistics (X-MOS) to improve predictions of natural disaster risks.
This approach utilizes deep regression techniques to precisely map CMIP model outputs to real measurements obtained from weather stations.
In contrast to previous research, our study places a strong emphasis on enhancing the estimation of the tails of future climate parameter distributions.
arXiv Detail & Related papers (2023-10-24T13:18:53Z) - Pedestrian Trajectory Forecasting Using Deep Ensembles Under Sensing
Uncertainty [125.41260574344933]
We consider an encoder-decoder based deep ensemble network for capturing both perception and predictive uncertainty simultaneously.
Overall, deep ensembles provided more robust predictions and the consideration of upstream uncertainty further increased the estimation accuracy for the model.
arXiv Detail & Related papers (2023-05-26T04:27:48Z) - Downscaling Extreme Rainfall Using Physical-Statistical Generative
Adversarial Learning [0.0]
We develop a data-driven downscaling (super-resolution) method that incorporates physics and statistics in a generative framework to learn the fine-scale spatial details of rainfall.
Our method transforms coarse-resolution ($0.25circ times 0.25circ$) climate model outputs into high-resolution ($0.01circ times 0.01circ$) rainfall fields while efficaciously quantifying uncertainty.
arXiv Detail & Related papers (2022-12-02T21:04:32Z) - Hard-Constrained Deep Learning for Climate Downscaling [30.280862393706542]
High-resolution climate and weather data is important to inform long-term decisions on climate adaptation and mitigation.
Forecasting models are limited by computational costs and, therefore, often generate coarse-resolution predictions.
Statistical downscaling, including super-resolution methods from deep learning, can provide an efficient method of upsampling low-resolution data.
arXiv Detail & Related papers (2022-08-08T16:54:01Z) - Dense Uncertainty Estimation via an Ensemble-based Conditional Latent
Variable Model [68.34559610536614]
We argue that the aleatoric uncertainty is an inherent attribute of the data and can only be correctly estimated with an unbiased oracle model.
We propose a new sampling and selection strategy at train time to approximate the oracle model for aleatoric uncertainty estimation.
Our results show that our solution achieves both accurate deterministic results and reliable uncertainty estimation.
arXiv Detail & Related papers (2021-11-22T08:54:10Z) - Quantifying Uncertainty in Deep Spatiotemporal Forecasting [67.77102283276409]
We describe two types of forecasting problems: regular grid-based and graph-based.
We analyze UQ methods from both the Bayesian and the frequentist point view, casting in a unified framework via statistical decision theory.
Through extensive experiments on real-world road network traffic, epidemics, and air quality forecasting tasks, we reveal the statistical computational trade-offs for different UQ methods.
arXiv Detail & Related papers (2021-05-25T14:35:46Z) - Approaching Neural Network Uncertainty Realism [53.308409014122816]
Quantifying or at least upper-bounding uncertainties is vital for safety-critical systems such as autonomous vehicles.
We evaluate uncertainty realism -- a strict quality criterion -- with a Mahalanobis distance-based statistical test.
We adopt it to the automotive domain and show that it significantly improves uncertainty realism compared to a plain encoder-decoder model.
arXiv Detail & Related papers (2021-01-08T11:56:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.