MultiLegalSBD: A Multilingual Legal Sentence Boundary Detection Dataset
- URL: http://arxiv.org/abs/2305.01211v1
- Date: Tue, 2 May 2023 05:52:03 GMT
- Title: MultiLegalSBD: A Multilingual Legal Sentence Boundary Detection Dataset
- Authors: Tobias Brugger, Matthias St\"urmer, Joel Niklaus
- Abstract summary: Sentence Boundary Detection (SBD) is one of the foundational building blocks of Natural Language Processing (NLP)
We curated a diverse multilingual legal dataset consisting of over 130'000 annotated sentences in 6 languages.
We trained and tested monolingual and multilingual models based on CRF, BiLSTM-CRF, and transformers, demonstrating state-of-the-art performance.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Sentence Boundary Detection (SBD) is one of the foundational building blocks
of Natural Language Processing (NLP), with incorrectly split sentences heavily
influencing the output quality of downstream tasks. It is a challenging task
for algorithms, especially in the legal domain, considering the complex and
different sentence structures used. In this work, we curated a diverse
multilingual legal dataset consisting of over 130'000 annotated sentences in 6
languages. Our experimental results indicate that the performance of existing
SBD models is subpar on multilingual legal data. We trained and tested
monolingual and multilingual models based on CRF, BiLSTM-CRF, and transformers,
demonstrating state-of-the-art performance. We also show that our multilingual
models outperform all baselines in the zero-shot setting on a Portuguese test
set. To encourage further research and development by the community, we have
made our dataset, models, and code publicly available.
Related papers
- Towards Building an End-to-End Multilingual Automatic Lyrics Transcription Model [14.39119862985503]
We aim to create a multilingual ALT system with available datasets.
Inspired by architectures that have been proven effective for English ALT, we adapt these techniques to the multilingual scenario.
We evaluate the performance of the multilingual model in comparison to its monolingual counterparts.
arXiv Detail & Related papers (2024-06-25T15:02:32Z) - On the Calibration of Multilingual Question Answering LLMs [57.296161186129545]
We benchmark the calibration of several multilingual Large Language Models (MLLMs) on a variety of Question Answering tasks.
We study different dimensions of calibration in in-distribution, out-of-distribution, and cross-lingual transfer settings.
For decoder-only LLMs such as LlaMa2, we additionally find that in-context learning improves confidence calibration on multilingual data.
arXiv Detail & Related papers (2023-11-15T03:29:02Z) - The Belebele Benchmark: a Parallel Reading Comprehension Dataset in 122 Language Variants [80.4837840962273]
We present Belebele, a dataset spanning 122 language variants.
This dataset enables the evaluation of text models in high-, medium-, and low-resource languages.
arXiv Detail & Related papers (2023-08-31T17:43:08Z) - Efficiently Aligned Cross-Lingual Transfer Learning for Conversational
Tasks using Prompt-Tuning [98.60739735409243]
Cross-lingual transfer of language models trained on high-resource languages like English has been widely studied for many NLP tasks.
We introduce XSGD for cross-lingual alignment pretraining, a parallel and large-scale multilingual conversation dataset.
To facilitate aligned cross-lingual representations, we develop an efficient prompt-tuning-based method for learning alignment prompts.
arXiv Detail & Related papers (2023-04-03T18:46:01Z) - Investigating the Translation Performance of a Large Multilingual
Language Model: the Case of BLOOM [8.858671209228536]
We focus on BLOOM's multilingual ability by evaluating its machine translation performance across several datasets.
We study several aspects including prompt design, model sizes, cross-lingual transfer and the use of discursive context.
arXiv Detail & Related papers (2023-03-03T13:23:42Z) - On Cross-Lingual Retrieval with Multilingual Text Encoders [51.60862829942932]
We study the suitability of state-of-the-art multilingual encoders for cross-lingual document and sentence retrieval tasks.
We benchmark their performance in unsupervised ad-hoc sentence- and document-level CLIR experiments.
We evaluate multilingual encoders fine-tuned in a supervised fashion (i.e., we learn to rank) on English relevance data in a series of zero-shot language and domain transfer CLIR experiments.
arXiv Detail & Related papers (2021-12-21T08:10:27Z) - MFAQ: a Multilingual FAQ Dataset [9.625301186732598]
We present the first multilingual FAQ dataset publicly available.
We collected around 6M FAQ pairs from the web, in 21 different languages.
We adopt a similar setup as Dense Passage Retrieval (DPR) and test various bi-encoders on this dataset.
arXiv Detail & Related papers (2021-09-27T08:43:25Z) - CoSDA-ML: Multi-Lingual Code-Switching Data Augmentation for Zero-Shot
Cross-Lingual NLP [68.2650714613869]
We propose a data augmentation framework to generate multi-lingual code-switching data to fine-tune mBERT.
Compared with the existing work, our method does not rely on bilingual sentences for training, and requires only one training process for multiple target languages.
arXiv Detail & Related papers (2020-06-11T13:15:59Z) - XCOPA: A Multilingual Dataset for Causal Commonsense Reasoning [68.57658225995966]
Cross-lingual Choice of Plausible Alternatives (XCOPA) is a typologically diverse multilingual dataset for causal commonsense reasoning in 11 languages.
We evaluate a range of state-of-the-art models on this novel dataset, revealing that the performance of current methods falls short compared to translation-based transfer.
arXiv Detail & Related papers (2020-05-01T12:22:33Z) - Deep Learning Models for Multilingual Hate Speech Detection [5.977278650516324]
In this paper, we conduct a large scale analysis of multilingual hate speech in 9 languages from 16 different sources.
We observe that in low resource setting, simple models such as LASER embedding with logistic regression performs the best.
In case of zero-shot classification, languages such as Italian and Portuguese achieve good results.
arXiv Detail & Related papers (2020-04-14T13:14:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.