The Training Process of Many Deep Networks Explores the Same Low-Dimensional Manifold
- URL: http://arxiv.org/abs/2305.01604v3
- Date: Tue, 19 Mar 2024 17:51:12 GMT
- Title: The Training Process of Many Deep Networks Explores the Same Low-Dimensional Manifold
- Authors: Jialin Mao, Itay Griniasty, Han Kheng Teoh, Rahul Ramesh, Rubing Yang, Mark K. Transtrum, James P. Sethna, Pratik Chaudhari,
- Abstract summary: We develop information-geometric techniques to analyze the trajectories of the predictions of deep networks during training.
Networks with different architectures follow distinguishable trajectories but other factors have a minimal influence.
Larger networks train along a similar manifold as that of smaller networks, just faster; and networks at very different parts of the prediction space converge to the solution along a similar manifold.
- Score: 21.431022906309334
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We develop information-geometric techniques to analyze the trajectories of the predictions of deep networks during training. By examining the underlying high-dimensional probabilistic models, we reveal that the training process explores an effectively low-dimensional manifold. Networks with a wide range of architectures, sizes, trained using different optimization methods, regularization techniques, data augmentation techniques, and weight initializations lie on the same manifold in the prediction space. We study the details of this manifold to find that networks with different architectures follow distinguishable trajectories but other factors have a minimal influence; larger networks train along a similar manifold as that of smaller networks, just faster; and networks initialized at very different parts of the prediction space converge to the solution along a similar manifold.
Related papers
- Transferable Post-training via Inverse Value Learning [83.75002867411263]
We propose modeling changes at the logits level during post-training using a separate neural network (i.e., the value network)
After training this network on a small base model using demonstrations, this network can be seamlessly integrated with other pre-trained models during inference.
We demonstrate that the resulting value network has broad transferability across pre-trained models of different parameter sizes.
arXiv Detail & Related papers (2024-10-28T13:48:43Z) - Towards Mitigating Architecture Overfitting in Dataset Distillation [2.7610336610850292]
We propose a series of approaches in both architecture designs and training schemes to boost the generalization performance.
We conduct extensive experiments to demonstrate the effectiveness and generality of our methods.
arXiv Detail & Related papers (2023-09-08T08:12:29Z) - Towards a Better Theoretical Understanding of Independent Subnetwork Training [56.24689348875711]
We take a closer theoretical look at Independent Subnetwork Training (IST)
IST is a recently proposed and highly effective technique for solving the aforementioned problems.
We identify fundamental differences between IST and alternative approaches, such as distributed methods with compressed communication.
arXiv Detail & Related papers (2023-06-28T18:14:22Z) - Deep neural networks architectures from the perspective of manifold
learning [0.0]
This paper is a comprehensive comparison and description of neural network architectures in terms of ge-ometry and topology.
We focus on the internal representation of neural networks and on the dynamics of changes in the topology and geometry of a data manifold on different layers.
arXiv Detail & Related papers (2023-06-06T04:57:39Z) - Dynamic Neural Network for Multi-Task Learning Searching across Diverse
Network Topologies [14.574399133024594]
We present a new MTL framework that searches for optimized structures for multiple tasks with diverse graph topologies.
We design a restricted DAG-based central network with read-in/read-out layers to build topologically diverse task-adaptive structures.
arXiv Detail & Related papers (2023-03-13T05:01:50Z) - Reparameterization through Spatial Gradient Scaling [69.27487006953852]
Reparameterization aims to improve the generalization of deep neural networks by transforming convolutional layers into equivalent multi-branched structures during training.
We present a novel spatial gradient scaling method to redistribute learning focus among weights in convolutional networks.
arXiv Detail & Related papers (2023-03-05T17:57:33Z) - SIRe-Networks: Skip Connections over Interlaced Multi-Task Learning and
Residual Connections for Structure Preserving Object Classification [28.02302915971059]
In this paper, we introduce an interlaced multi-task learning strategy, defined SIRe, to reduce the vanishing gradient in relation to the object classification task.
The presented methodology directly improves a convolutional neural network (CNN) by enforcing the input image structure preservation through auto-encoders.
To validate the presented methodology, a simple CNN and various implementations of famous networks are extended via the SIRe strategy and extensively tested on the CIFAR100 dataset.
arXiv Detail & Related papers (2021-10-06T13:54:49Z) - Semi-supervised Network Embedding with Differentiable Deep Quantisation [81.49184987430333]
We develop d-SNEQ, a differentiable quantisation method for network embedding.
d-SNEQ incorporates a rank loss to equip the learned quantisation codes with rich high-order information.
It is able to substantially compress the size of trained embeddings, thus reducing storage footprint and accelerating retrieval speed.
arXiv Detail & Related papers (2021-08-20T11:53:05Z) - The Principles of Deep Learning Theory [19.33681537640272]
This book develops an effective theory approach to understanding deep neural networks of practical relevance.
We explain how these effectively-deep networks learn nontrivial representations from training.
We show that the depth-to-width ratio governs the effective model complexity of the ensemble of trained networks.
arXiv Detail & Related papers (2021-06-18T15:00:00Z) - All at Once Network Quantization via Collaborative Knowledge Transfer [56.95849086170461]
We develop a novel collaborative knowledge transfer approach for efficiently training the all-at-once quantization network.
Specifically, we propose an adaptive selection strategy to choose a high-precision enquoteteacher for transferring knowledge to the low-precision student.
To effectively transfer knowledge, we develop a dynamic block swapping method by randomly replacing the blocks in the lower-precision student network with the corresponding blocks in the higher-precision teacher network.
arXiv Detail & Related papers (2021-03-02T03:09:03Z) - On Robustness and Transferability of Convolutional Neural Networks [147.71743081671508]
Modern deep convolutional networks (CNNs) are often criticized for not generalizing under distributional shifts.
We study the interplay between out-of-distribution and transfer performance of modern image classification CNNs for the first time.
We find that increasing both the training set and model sizes significantly improve the distributional shift robustness.
arXiv Detail & Related papers (2020-07-16T18:39:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.