Quantum Enhanced Pattern Search Optimization
- URL: http://arxiv.org/abs/2305.01703v1
- Date: Tue, 2 May 2023 18:13:49 GMT
- Title: Quantum Enhanced Pattern Search Optimization
- Authors: Colton Mikes, Ismael R. de Farias Jr., David Huckleberry Gutman,
Victoria E. Howle
- Abstract summary: This paper introduces a quantum-classical hybrid algorithm for generalized pattern search (GPS) algorithms.
We introduce a quantum search step algorithm using amplitude amplification, which reduces the number of oracle calls needed during the search step from O(N) classical calls to O(N(1/2)) quantum calls.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper introduces a quantum-classical hybrid algorithm for generalized
pattern search (GPS) algorithms. We introduce a quantum search step algorithm
using amplitude amplification, which reduces the number of oracle calls needed
during the search step from O(N) classical calls to O(N^(1/2)) quantum calls.
This work addresses three fundamental issues with using a quantum search step
with GPS. First we address the need to mark an improved mesh point, a
requirement of the amplitude amplification algorithm. Second, we introduce a
modified version of the amplitude amplification algorithm QSearch, which is
guaranteed to terminate using a finite number of iterations. Third, we avoid
disrupting the GPS algorithm's convergence by limiting the quantum algorithm to
the search step.
Related papers
- Quantum algorithms for Hopcroft's problem [45.45456673484445]
We study quantum algorithms for Hopcroft's problem which is a fundamental problem in computational geometry.
The classical complexity of this problem is well-studied, with the best known algorithm running in $O(n4/3)$ time.
Our results are two different quantum algorithms with time complexity $widetilde O(n5/6)$.
arXiv Detail & Related papers (2024-05-02T10:29:06Z) - Generalized quantum Arimoto-Blahut algorithm and its application to
quantum information bottleneck [55.22418739014892]
We generalize the quantum Arimoto-Blahut algorithm by Ramakrishnan et al.
We apply our algorithm to the quantum information bottleneck with three quantum systems.
Our numerical analysis shows that our algorithm is better than their algorithm.
arXiv Detail & Related papers (2023-11-19T00:06:11Z) - Quantum Worst-Case to Average-Case Reductions for All Linear Problems [66.65497337069792]
We study the problem of designing worst-case to average-case reductions for quantum algorithms.
We provide an explicit and efficient transformation of quantum algorithms that are only correct on a small fraction of their inputs into ones that are correct on all inputs.
arXiv Detail & Related papers (2022-12-06T22:01:49Z) - Adaptive Algorithm for Quantum Amplitude Estimation [13.82667502131475]
We propose an adaptive algorithm for interval estimation of amplitudes.
The proposed algorithm uses a similar number of quantum queries to achieve the same level of precision.
We rigorously prove that the number of oracle queries achieves $O(1/epsilon)$, i.e., a quadratic speedup over classical Monte Carlo sampling.
arXiv Detail & Related papers (2022-06-16T21:11:15Z) - Quantum Speedup for Higher-Order Unconstrained Binary Optimization and
MIMO Maximum Likelihood Detection [2.5272389610447856]
We propose a quantum algorithm that supports a real-valued higher-order unconstrained binary optimization problem.
The proposed algorithm is capable of reducing the query complexity in the classical domain and providing a quadratic speedup in the quantum domain.
arXiv Detail & Related papers (2022-05-31T00:14:49Z) - Entanglement and coherence in Bernstein-Vazirani algorithm [58.720142291102135]
Bernstein-Vazirani algorithm allows one to determine a bit string encoded into an oracle.
We analyze in detail the quantum resources in the Bernstein-Vazirani algorithm.
We show that in the absence of entanglement, the performance of the algorithm is directly related to the amount of quantum coherence in the initial state.
arXiv Detail & Related papers (2022-05-26T20:32:36Z) - A quantum algorithm for gravitational wave matched filtering [0.0]
We propose the application of a quantum algorithm for the detection of unknown signals in noisy data.
In comparison to the classical method, this provides a speed-up proportional to the square-root of the number of templates.
We demonstrate both a proof-of-principle quantum circuit implementation, and a simulation of the algorithm's application to the detection of the first gravitational wave signal GW150914.
arXiv Detail & Related papers (2021-09-03T13:58:58Z) - Grover search revisited; application to image pattern matching [0.8367938108534343]
We propose a quantum algorithm that approximately executes the entire Grover database search or pattern matching algorithm.
The key idea is to use the recently proposed approximate amplitude encoding method on a shallow quantum circuit.
arXiv Detail & Related papers (2021-08-24T17:30:41Z) - Quantum Amplitude Amplification Operators [3.8073142980733]
We show the characterization of quantum iterations that would generally construct quantum amplitude amplification algorithms with a quadratic speedup.
We show that an optimal and exact quantum amplitude amplification algorithm corresponds to the Grover algorithm together with a single iteration of QAAO.
We then realize 3-qubit QAAOs with the current quantum technologies via cloud-based quantum computing services, IBMQ and IonQ.
arXiv Detail & Related papers (2021-05-20T07:26:23Z) - Efficient Algorithms for Causal Order Discovery in Quantum Networks [44.356294905844834]
Given black-box access to the input and output systems, we develop the first efficient quantum causal order discovery algorithm.
We model the causal order with quantum combs, and our algorithms output the order of inputs and outputs that the given process is compatible with.
Our algorithms will provide efficient ways to detect and optimize available transmission paths in quantum communication networks.
arXiv Detail & Related papers (2020-12-03T07:12:08Z) - Improving the Performance of Deep Quantum Optimization Algorithms with
Continuous Gate Sets [47.00474212574662]
Variational quantum algorithms are believed to be promising for solving computationally hard problems.
In this paper, we experimentally investigate the circuit-depth-dependent performance of QAOA applied to exact-cover problem instances.
Our results demonstrate that the use of continuous gate sets may be a key component in extending the impact of near-term quantum computers.
arXiv Detail & Related papers (2020-05-11T17:20:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.