Learning Disentangled Semantic Spaces of Explanations via Invertible Neural Networks
- URL: http://arxiv.org/abs/2305.01713v3
- Date: Tue, 11 Jun 2024 17:29:22 GMT
- Title: Learning Disentangled Semantic Spaces of Explanations via Invertible Neural Networks
- Authors: Yingji Zhang, Danilo S. Carvalho, André Freitas,
- Abstract summary: Disentangled latent spaces usually have better semantic separability and geometrical properties, which leads to better interpretability and more controllable data generation.
In this work, we focus on a more general form of sentence disentanglement, targeting the localised modification and control of more general sentence semantic features.
We introduce a flow-based invertible neural network (INN) mechanism integrated with a transformer-based language Autoencoder (AE) in order to deliver latent spaces with better separability properties.
- Score: 10.880057430629126
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Disentangled latent spaces usually have better semantic separability and geometrical properties, which leads to better interpretability and more controllable data generation. While this has been well investigated in Computer Vision, in tasks such as image disentanglement, in the NLP domain sentence disentanglement is still comparatively under-investigated. Most previous work have concentrated on disentangling task-specific generative factors, such as sentiment, within the context of style transfer. In this work, we focus on a more general form of sentence disentanglement, targeting the localised modification and control of more general sentence semantic features. To achieve this, we contribute to a novel notion of sentence semantic disentanglement and introduce a flow-based invertible neural network (INN) mechanism integrated with a transformer-based language Autoencoder (AE) in order to deliver latent spaces with better separability properties. Experimental results demonstrate that the model can conform the distributed latent space into a better semantically disentangled sentence space, leading to improved language interpretability and controlled generation when compared to the recent state-of-the-art language VAE models.
Related papers
- LlaMaVAE: Guiding Large Language Model Generation via Continuous Latent
Sentence Spaces [1.529963465178546]
We present LlaMaVAE, which combines expressive encoder and decoder models (sentenceT5 and LlaMA) with a VAE architecture to provide better text generation control to large language models (LLMs)
Experimental results reveal that LlaMaVAE can outperform the previous state-of-the-art VAE language model, Optimus, across various tasks.
arXiv Detail & Related papers (2023-12-20T17:25:23Z) - Lexical semantics enhanced neural word embeddings [4.040491121427623]
hierarchy-fitting is a novel approach to modelling semantic similarity nuances inherently stored in the IS-A hierarchies.
Results demonstrate the efficacy of hierarchy-fitting in specialising neural embeddings with semantic relations in late fusion.
arXiv Detail & Related papers (2022-10-03T08:10:23Z) - Synonym Detection Using Syntactic Dependency And Neural Embeddings [3.0770051635103974]
We study the role of syntactic dependencies in deriving distributional semantics using the Vector Space Model.
We study the effectiveness of injecting human-compiled semantic knowledge into neural embeddings on computing distributional similarity.
Our results show that the syntactically conditioned contexts can interpret lexical semantics better than the unconditioned ones.
arXiv Detail & Related papers (2022-09-30T03:16:41Z) - Contextualized Semantic Distance between Highly Overlapped Texts [85.1541170468617]
Overlapping frequently occurs in paired texts in natural language processing tasks like text editing and semantic similarity evaluation.
This paper aims to address the issue with a mask-and-predict strategy.
We take the words in the longest common sequence as neighboring words and use masked language modeling (MLM) to predict the distributions on their positions.
Experiments on Semantic Textual Similarity show NDD to be more sensitive to various semantic differences, especially on highly overlapped paired texts.
arXiv Detail & Related papers (2021-10-04T03:59:15Z) - Preliminary study on using vector quantization latent spaces for TTS/VC
systems with consistent performance [55.10864476206503]
We investigate the use of quantized vectors to model the latent linguistic embedding.
By enforcing different policies over the latent spaces in the training, we are able to obtain a latent linguistic embedding.
Our experiments show that the voice cloning system built with vector quantization has only a small degradation in terms of perceptive evaluations.
arXiv Detail & Related papers (2021-06-25T07:51:35Z) - Context Decoupling Augmentation for Weakly Supervised Semantic
Segmentation [53.49821324597837]
Weakly supervised semantic segmentation is a challenging problem that has been deeply studied in recent years.
We present a Context Decoupling Augmentation ( CDA) method to change the inherent context in which the objects appear.
To validate the effectiveness of the proposed method, extensive experiments on PASCAL VOC 2012 dataset with several alternative network architectures demonstrate that CDA can boost various popular WSSS methods to the new state-of-the-art by a large margin.
arXiv Detail & Related papers (2021-03-02T15:05:09Z) - APo-VAE: Text Generation in Hyperbolic Space [116.11974607497986]
In this paper, we investigate text generation in a hyperbolic latent space to learn continuous hierarchical representations.
An Adrial Poincare Variversaational Autoencoder (APo-VAE) is presented, where both the prior and variational posterior of latent variables are defined over a Poincare ball via wrapped normal distributions.
Experiments in language modeling and dialog-response generation tasks demonstrate the winning effectiveness of the proposed APo-VAE model.
arXiv Detail & Related papers (2020-04-30T19:05:41Z) - Improve Variational Autoencoder for Text Generationwith Discrete Latent
Bottleneck [52.08901549360262]
Variational autoencoders (VAEs) are essential tools in end-to-end representation learning.
VAEs tend to ignore latent variables with a strong auto-regressive decoder.
We propose a principled approach to enforce an implicit latent feature matching in a more compact latent space.
arXiv Detail & Related papers (2020-04-22T14:41:37Z) - Discrete Variational Attention Models for Language Generation [51.88612022940496]
We propose a discrete variational attention model with categorical distribution over the attention mechanism owing to the discrete nature in languages.
Thanks to the property of discreteness, the training of our proposed approach does not suffer from posterior collapse.
arXiv Detail & Related papers (2020-04-21T05:49:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.