A Lightweight CNN-Transformer Model for Learning Traveling Salesman
Problems
- URL: http://arxiv.org/abs/2305.01883v2
- Date: Wed, 6 Mar 2024 01:45:16 GMT
- Title: A Lightweight CNN-Transformer Model for Learning Traveling Salesman
Problems
- Authors: Minseop Jung, Jaeseung Lee, Jibum Kim
- Abstract summary: CNN-Transformer model is able to better learn spatial features from input data using a CNN embedding layer.
The proposed model exhibits the best performance in real-world datasets.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Several studies have attempted to solve traveling salesman problems (TSPs)
using various deep learning techniques. Among them, Transformer-based models
show state-of-the-art performance even for large-scale Traveling Salesman
Problems (TSPs). However, they are based on fully-connected attention models
and suffer from large computational complexity and GPU memory usage. Our work
is the first CNN-Transformer model based on a CNN embedding layer and partial
self-attention for TSP. Our CNN-Transformer model is able to better learn
spatial features from input data using a CNN embedding layer compared with the
standard Transformer-based models. It also removes considerable redundancy in
fully-connected attention models using the proposed partial self-attention.
Experimental results show that the proposed CNN embedding layer and partial
self-attention are very effective in improving performance and computational
complexity. The proposed model exhibits the best performance in real-world
datasets and outperforms other existing state-of-the-art (SOTA)
Transformer-based models in various aspects. Our code is publicly available at
https://github.com/cm8908/CNN_Transformer3.
Related papers
- OA-CNNs: Omni-Adaptive Sparse CNNs for 3D Semantic Segmentation [70.17681136234202]
We reexamine the design distinctions and test the limits of what a sparse CNN can achieve.
We propose two key components, i.e., adaptive receptive fields (spatially) and adaptive relation, to bridge the gap.
This exploration led to the creation of Omni-Adaptive 3D CNNs (OA-CNNs), a family of networks that integrates a lightweight module.
arXiv Detail & Related papers (2024-03-21T14:06:38Z) - Reusing Convolutional Neural Network Models through Modularization and
Composition [22.823870645316397]
We propose two modularization approaches named CNNSplitter and GradSplitter.
CNNSplitter decomposes a trained convolutional neural network (CNN) model into $N$ small reusable modules.
The resulting modules can be reused to patch existing CNN models or build new CNN models through composition.
arXiv Detail & Related papers (2023-11-08T03:18:49Z) - Dissecting Multimodality in VideoQA Transformer Models by Impairing Modality Fusion [54.33764537135906]
VideoQA Transformer models demonstrate competitive performance on standard benchmarks.
Do these models capture the rich multimodal structures and dynamics from video and text jointly?
Are they achieving high scores by exploiting biases and spurious features?
arXiv Detail & Related papers (2023-06-15T06:45:46Z) - InternImage: Exploring Large-Scale Vision Foundation Models with
Deformable Convolutions [95.94629864981091]
This work presents a new large-scale CNN-based foundation model, termed InternImage, which can obtain the gain from increasing parameters and training data like ViTs.
The proposed InternImage reduces the strict inductive bias of traditional CNNs and makes it possible to learn stronger and more robust patterns with large-scale parameters from massive data like ViTs.
arXiv Detail & Related papers (2022-11-10T18:59:04Z) - Efficient Large-scale Audio Tagging via Transformer-to-CNN Knowledge
Distillation [6.617487928813374]
We propose a training procedure for efficient CNNs based on offline Knowledge Distillation (KD) from high-performing yet complex transformers.
We provide models of different complexity levels, scaling from low-complexity models up to a new state-of-the-art performance of.483 mAP on AudioSet.
arXiv Detail & Related papers (2022-11-09T09:58:22Z) - Patching Weak Convolutional Neural Network Models through Modularization
and Composition [19.986199290508925]
A convolutional neuron network (CNN) model for classification tasks often performs unsatisfactorily.
We propose a compressed modularization approach, CNNSplitter, which decomposes a strong CNN model for $N$-class classification into $N$ smaller CNN modules.
We show that CNNSplitter can patch a weak CNN model through modularization and composition, thus providing a new solution for developing robust CNN models.
arXiv Detail & Related papers (2022-09-11T15:26:16Z) - A Battle of Network Structures: An Empirical Study of CNN, Transformer,
and MLP [121.35904748477421]
Convolutional neural networks (CNN) are the dominant deep neural network (DNN) architecture for computer vision.
Transformer and multi-layer perceptron (MLP)-based models, such as Vision Transformer and Vision-Mixer, started to lead new trends.
In this paper, we conduct empirical studies on these DNN structures and try to understand their respective pros and cons.
arXiv Detail & Related papers (2021-08-30T06:09:02Z) - Transformed CNNs: recasting pre-trained convolutional layers with
self-attention [17.96659165573821]
Vision Transformers (ViT) have emerged as a powerful alternative to convolutional networks (CNNs)
In this work, we explore the idea of reducing the time spent training these layers by initializing them as convolutional layers.
With only 50 epochs of fine-tuning, the resulting T-CNNs demonstrate significant performance gains.
arXiv Detail & Related papers (2021-06-10T14:56:10Z) - ViViT: A Video Vision Transformer [75.74690759089529]
We present pure-transformer based models for video classification.
Our model extracts-temporal tokens from the input video, which are then encoded by a series of transformer layers.
We show how we can effectively regularise the model during training and leverage pretrained image models to be able to train on comparatively small datasets.
arXiv Detail & Related papers (2021-03-29T15:27:17Z) - Exploring Deep Hybrid Tensor-to-Vector Network Architectures for
Regression Based Speech Enhancement [53.47564132861866]
We find that a hybrid architecture, namely CNN-TT, is capable of maintaining a good quality performance with a reduced model parameter size.
CNN-TT is composed of several convolutional layers at the bottom for feature extraction to improve speech quality.
arXiv Detail & Related papers (2020-07-25T22:21:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.