Bayesian Safety Validation for Failure Probability Estimation of Black-Box Systems
- URL: http://arxiv.org/abs/2305.02449v2
- Date: Sat, 29 Jun 2024 07:43:38 GMT
- Title: Bayesian Safety Validation for Failure Probability Estimation of Black-Box Systems
- Authors: Robert J. Moss, Mykel J. Kochenderfer, Maxime Gariel, Arthur Dubois,
- Abstract summary: Estimating the probability of failure is an important step in the certification of safety-critical systems.
This work frames the problem of black-box safety validation as a Bayesian optimization problem.
The algorithm is designed to search for failures, compute the most-likely failure, and estimate the failure probability over an operating domain.
- Score: 34.61865848439637
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Estimating the probability of failure is an important step in the certification of safety-critical systems. Efficient estimation methods are often needed due to the challenges posed by high-dimensional input spaces, risky test scenarios, and computationally expensive simulators. This work frames the problem of black-box safety validation as a Bayesian optimization problem and introduces a method that iteratively fits a probabilistic surrogate model to efficiently predict failures. The algorithm is designed to search for failures, compute the most-likely failure, and estimate the failure probability over an operating domain using importance sampling. We introduce three acquisition functions that aim to reduce uncertainty by covering the design space, optimize the analytically derived failure boundaries, and sample the predicted failure regions. Results show this Bayesian safety validation approach provides a more accurate estimate of failure probability with orders of magnitude fewer samples and performs well across various safety validation metrics. We demonstrate this approach on three test problems, a stochastic decision making system, and a neural network-based runway detection system. This work is open sourced (https://github.com/sisl/BayesianSafetyValidation.jl) and currently being used to supplement the FAA certification process of the machine learning components for an autonomous cargo aircraft.
Related papers
- The #DNN-Verification Problem: Counting Unsafe Inputs for Deep Neural
Networks [94.63547069706459]
#DNN-Verification problem involves counting the number of input configurations of a DNN that result in a violation of a safety property.
We propose a novel approach that returns the exact count of violations.
We present experimental results on a set of safety-critical benchmarks.
arXiv Detail & Related papers (2023-01-17T18:32:01Z) - Meta-Learning Priors for Safe Bayesian Optimization [72.8349503901712]
We build on a meta-learning algorithm, F-PACOH, capable of providing reliable uncertainty quantification in settings of data scarcity.
As core contribution, we develop a novel framework for choosing safety-compliant priors in a data-riven manner.
On benchmark functions and a high-precision motion system, we demonstrate that our meta-learned priors accelerate the convergence of safe BO approaches.
arXiv Detail & Related papers (2022-10-03T08:38:38Z) - Recursively Feasible Probabilistic Safe Online Learning with Control Barrier Functions [60.26921219698514]
We introduce a model-uncertainty-aware reformulation of CBF-based safety-critical controllers.
We then present the pointwise feasibility conditions of the resulting safety controller.
We use these conditions to devise an event-triggered online data collection strategy.
arXiv Detail & Related papers (2022-08-23T05:02:09Z) - Log Barriers for Safe Black-box Optimization with Application to Safe
Reinforcement Learning [72.97229770329214]
We introduce a general approach for seeking high dimensional non-linear optimization problems in which maintaining safety during learning is crucial.
Our approach called LBSGD is based on applying a logarithmic barrier approximation with a carefully chosen step size.
We demonstrate the effectiveness of our approach on minimizing violation in policy tasks in safe reinforcement learning.
arXiv Detail & Related papers (2022-07-21T11:14:47Z) - Learning Robust Output Control Barrier Functions from Safe Expert Demonstrations [50.37808220291108]
This paper addresses learning safe output feedback control laws from partial observations of expert demonstrations.
We first propose robust output control barrier functions (ROCBFs) as a means to guarantee safety.
We then formulate an optimization problem to learn ROCBFs from expert demonstrations that exhibit safe system behavior.
arXiv Detail & Related papers (2021-11-18T23:21:00Z) - Rare event estimation using stochastic spectral embedding [0.0]
Estimating the probability of rare failure events is an essential step in the reliability assessment of engineering systems.
We propose a set of modifications that tailor the algorithm to efficiently solve rare event estimation problems.
arXiv Detail & Related papers (2021-06-09T16:10:33Z) - Entropy-based adaptive design for contour finding and estimating
reliability [0.24466725954625884]
In reliability analysis, methods used to estimate failure probability are often limited by the costs associated with model evaluations.
We introduce an entropy-based GP adaptive design that, when paired with MFIS, provides more accurate failure probability estimates.
Illustrative examples are provided on benchmark data as well as an application to an impact damage simulator for National Aeronautics and Space Administration (NASA) spacesuits.
arXiv Detail & Related papers (2021-05-24T15:41:15Z) - Efficient falsification approach for autonomous vehicle validation using
a parameter optimisation technique based on reinforcement learning [6.198523595657983]
The widescale deployment of Autonomous Vehicles (AV) appears to be imminent despite many safety challenges that are yet to be resolved.
The uncertainties in the behaviour of the traffic participants and the dynamic world cause reactions in advanced autonomous systems.
This paper presents an efficient falsification method to evaluate the System Under Test.
arXiv Detail & Related papers (2020-11-16T02:56:13Z) - Chance-Constrained Trajectory Optimization for Safe Exploration and
Learning of Nonlinear Systems [81.7983463275447]
Learning-based control algorithms require data collection with abundant supervision for training.
We present a new approach for optimal motion planning with safe exploration that integrates chance-constrained optimal control with dynamics learning and feedback control.
arXiv Detail & Related papers (2020-05-09T05:57:43Z) - A Survey of Algorithms for Black-Box Safety Validation of Cyber-Physical
Systems [30.638615396429536]
Motivated by the prevalence of safety-critical artificial intelligence, this work provides a survey of state-of-the-art safety validation techniques for CPS.
We present and discuss algorithms in the domains of optimization, path planning, reinforcement learning, and importance sampling.
A brief overview of safety-critical applications is given, including autonomous vehicles and aircraft collision avoidance systems.
arXiv Detail & Related papers (2020-05-06T17:31:51Z) - Efficient statistical validation with edge cases to evaluate Highly
Automated Vehicles [6.198523595657983]
The widescale deployment of Autonomous Vehicles seems to be imminent despite many safety challenges that are yet to be resolved.
Existing standards focus on deterministic processes where the validation requires only a set of test cases that cover the requirements.
This paper presents a new approach to compute the statistical characteristics of a system's behaviour by biasing automatically generated test cases towards the worst case scenarios.
arXiv Detail & Related papers (2020-03-04T04:35:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.