Incentivising the federation: gradient-based metrics for data selection and valuation in private decentralised training
- URL: http://arxiv.org/abs/2305.02942v3
- Date: Tue, 16 Apr 2024 09:30:18 GMT
- Title: Incentivising the federation: gradient-based metrics for data selection and valuation in private decentralised training
- Authors: Dmitrii Usynin, Daniel Rueckert, Georgios Kaissis,
- Abstract summary: We investigate how to leverage gradient information to permit the participants of private training settings to select the data most beneficial for the jointly trained model.
We show that these techniques can provide the federated clients with tools for principled data selection even in stricter privacy settings.
- Score: 15.233103072063951
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Obtaining high-quality data for collaborative training of machine learning models can be a challenging task due to A) regulatory concerns and B) a lack of data owner incentives to participate. The first issue can be addressed through the combination of distributed machine learning techniques (e.g. federated learning) and privacy enhancing technologies (PET), such as the differentially private (DP) model training. The second challenge can be addressed by rewarding the participants for giving access to data which is beneficial to the training model, which is of particular importance in federated settings, where the data is unevenly distributed. However, DP noise can adversely affect the underrepresented and the atypical (yet often informative) data samples, making it difficult to assess their usefulness. In this work, we investigate how to leverage gradient information to permit the participants of private training settings to select the data most beneficial for the jointly trained model. We assess two such methods, namely variance of gradients (VoG) and the privacy loss-input susceptibility score (PLIS). We show that these techniques can provide the federated clients with tools for principled data selection even in stricter privacy settings.
Related papers
- Ranking-based Client Selection with Imitation Learning for Efficient Federated Learning [20.412469498888292]
Federated Learning (FL) enables multiple devices to collaboratively train a shared model.
The selection of participating devices in each training round critically affects both the model performance and training efficiency.
We introduce a novel device selection solution called FedRank, which is an end-to-end, ranking-based approach.
arXiv Detail & Related papers (2024-05-07T08:44:29Z) - FewFedPIT: Towards Privacy-preserving and Few-shot Federated Instruction Tuning [54.26614091429253]
Federated instruction tuning (FedIT) is a promising solution, by consolidating collaborative training across multiple data owners.
FedIT encounters limitations such as scarcity of instructional data and risk of exposure to training data extraction attacks.
We propose FewFedPIT, designed to simultaneously enhance privacy protection and model performance of federated few-shot learning.
arXiv Detail & Related papers (2024-03-10T08:41:22Z) - Personalized Federated Learning with Attention-based Client Selection [57.71009302168411]
We propose FedACS, a new PFL algorithm with an Attention-based Client Selection mechanism.
FedACS integrates an attention mechanism to enhance collaboration among clients with similar data distributions.
Experiments on CIFAR10 and FMNIST validate FedACS's superiority.
arXiv Detail & Related papers (2023-12-23T03:31:46Z) - Federated Learning for Early Dropout Prediction on Healthy Ageing
Applications [0.0]
We present a federated machine learning (FML) approach that minimizes privacy concerns and enables distributed training, without transferring individual data.
Our results show that data selection and class imbalance handling techniques significantly improve the predictive accuracy of models trained under FML.
arXiv Detail & Related papers (2023-09-08T13:17:06Z) - Benchmarking FedAvg and FedCurv for Image Classification Tasks [1.376408511310322]
This paper focuses on the problem of statistical heterogeneity of the data in the same federated network.
Several Federated Learning algorithms, such as FedAvg, FedProx and Federated Curvature (FedCurv) have already been proposed.
As a side product of this work, we release the non-IID version of the datasets we used so to facilitate further comparisons from the FL community.
arXiv Detail & Related papers (2023-03-31T10:13:01Z) - DPP-based Client Selection for Federated Learning with Non-IID Data [97.1195165400568]
This paper proposes a client selection (CS) method to tackle the communication bottleneck of federated learning (FL)
We first analyze the effect of CS in FL and show that FL training can be accelerated by adequately choosing participants to diversify the training dataset in each round of training.
We leverage data profiling and determinantal point process (DPP) sampling techniques to develop an algorithm termed Federated Learning with DPP-based Participant Selection (FL-DP$3$S)
arXiv Detail & Related papers (2023-03-30T13:14:54Z) - FedABC: Targeting Fair Competition in Personalized Federated Learning [76.9646903596757]
Federated learning aims to collaboratively train models without accessing their client's local private data.
We propose a novel and generic PFL framework termed Federated Averaging via Binary Classification, dubbed FedABC.
In particular, we adopt the one-vs-all'' training strategy in each client to alleviate the unfair competition between classes.
arXiv Detail & Related papers (2023-02-15T03:42:59Z) - Federated Multilingual Models for Medical Transcript Analysis [11.877236847857336]
We present a federated learning system for training a large-scale multi-lingual model.
None of the training data is ever transmitted to any central location.
We show that the global model performance can be further improved by a training step performed locally.
arXiv Detail & Related papers (2022-11-04T01:07:54Z) - Rethinking Data Heterogeneity in Federated Learning: Introducing a New
Notion and Standard Benchmarks [65.34113135080105]
We show that not only the issue of data heterogeneity in current setups is not necessarily a problem but also in fact it can be beneficial for the FL participants.
Our observations are intuitive.
Our code is available at https://github.com/MMorafah/FL-SC-NIID.
arXiv Detail & Related papers (2022-09-30T17:15:19Z) - DQRE-SCnet: A novel hybrid approach for selecting users in Federated
Learning with Deep-Q-Reinforcement Learning based on Spectral Clustering [1.174402845822043]
Machine learning models based on sensitive data in the real-world promise advances in areas ranging from medical screening to disease outbreaks, agriculture, industry, defense science, and more.
In many applications, learning participant communication rounds benefit from collecting their own private data sets, teaching detailed machine learning models on the real data, and sharing the benefits of using these models.
Due to existing privacy and security concerns, most people avoid sensitive data sharing for training. Without each user demonstrating their local data to a central server, Federated Learning allows various parties to train a machine learning algorithm on their shared data jointly.
arXiv Detail & Related papers (2021-11-07T15:14:29Z) - Decentralized Federated Learning Preserves Model and Data Privacy [77.454688257702]
We propose a fully decentralized approach, which allows to share knowledge between trained models.
Students are trained on the output of their teachers via synthetically generated input data.
The results show that an untrained student model, trained on the teachers output reaches comparable F1-scores as the teacher.
arXiv Detail & Related papers (2021-02-01T14:38:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.