Single-Shot Implicit Morphable Faces with Consistent Texture
Parameterization
- URL: http://arxiv.org/abs/2305.03043v1
- Date: Thu, 4 May 2023 17:58:40 GMT
- Title: Single-Shot Implicit Morphable Faces with Consistent Texture
Parameterization
- Authors: Connor Z. Lin, Koki Nagano, Jan Kautz, Eric R. Chan, Umar Iqbal,
Leonidas Guibas, Gordon Wetzstein, Sameh Khamis
- Abstract summary: We propose a novel method for constructing implicit 3D morphable face models that are both generalizable and intuitive for editing.
Our method improves upon photo-realism, geometry, and expression accuracy compared to state-of-the-art methods.
- Score: 91.52882218901627
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: There is a growing demand for the accessible creation of high-quality 3D
avatars that are animatable and customizable. Although 3D morphable models
provide intuitive control for editing and animation, and robustness for
single-view face reconstruction, they cannot easily capture geometric and
appearance details. Methods based on neural implicit representations, such as
signed distance functions (SDF) or neural radiance fields, approach
photo-realism, but are difficult to animate and do not generalize well to
unseen data. To tackle this problem, we propose a novel method for constructing
implicit 3D morphable face models that are both generalizable and intuitive for
editing. Trained from a collection of high-quality 3D scans, our face model is
parameterized by geometry, expression, and texture latent codes with a learned
SDF and explicit UV texture parameterization. Once trained, we can reconstruct
an avatar from a single in-the-wild image by leveraging the learned prior to
project the image into the latent space of our model. Our implicit morphable
face models can be used to render an avatar from novel views, animate facial
expressions by modifying expression codes, and edit textures by directly
painting on the learned UV-texture maps. We demonstrate quantitatively and
qualitatively that our method improves upon photo-realism, geometry, and
expression accuracy compared to state-of-the-art methods.
Related papers
- TADA! Text to Animatable Digital Avatars [57.52707683788961]
TADA takes textual descriptions and produces expressive 3D avatars with high-quality geometry and lifelike textures.
We derive an optimizable high-resolution body model from SMPL-X with 3D displacements and a texture map.
We render normals and RGB images of the generated character and exploit their latent embeddings in the SDS training process.
arXiv Detail & Related papers (2023-08-21T17:59:10Z) - Differentiable Blocks World: Qualitative 3D Decomposition by Rendering
Primitives [70.32817882783608]
We present an approach that produces a simple, compact, and actionable 3D world representation by means of 3D primitives.
Unlike existing primitive decomposition methods that rely on 3D input data, our approach operates directly on images.
We show that the resulting textured primitives faithfully reconstruct the input images and accurately model the visible 3D points.
arXiv Detail & Related papers (2023-07-11T17:58:31Z) - ClipFace: Text-guided Editing of Textured 3D Morphable Models [33.83015491013442]
We propose ClipFace, a novel self-supervised approach for text-guided editing of textured 3D morphable model of faces.
We employ user-friendly language prompts to enable control of the expressions as well as appearance of 3D faces.
Our model is trained in a self-supervised fashion by exploiting differentiable rendering and losses based on a pre-trained CLIP model.
arXiv Detail & Related papers (2022-12-02T19:01:08Z) - Next3D: Generative Neural Texture Rasterization for 3D-Aware Head
Avatars [36.4402388864691]
3D-aware generative adversarial networks (GANs) synthesize high-fidelity and multi-view-consistent facial images using only collections of single-view 2D imagery.
Recent efforts incorporate 3D Morphable Face Model (3DMM) to describe deformation in generative radiance fields either explicitly or implicitly.
We propose a novel 3D GAN framework for unsupervised learning of generative, high-quality and 3D-consistent facial avatars from unstructured 2D images.
arXiv Detail & Related papers (2022-11-21T06:40:46Z) - I M Avatar: Implicit Morphable Head Avatars from Videos [68.13409777995392]
We propose IMavatar, a novel method for learning implicit head avatars from monocular videos.
Inspired by the fine-grained control mechanisms afforded by conventional 3DMMs, we represent the expression- and pose-related deformations via learned blendshapes and skinning fields.
We show quantitatively and qualitatively that our method improves geometry and covers a more complete expression space compared to state-of-the-art methods.
arXiv Detail & Related papers (2021-12-14T15:30:32Z) - AvatarMe++: Facial Shape and BRDF Inference with Photorealistic
Rendering-Aware GANs [119.23922747230193]
We introduce the first method that is able to reconstruct render-ready 3D facial geometry and BRDF from a single "in-the-wild" image.
Our method outperforms the existing arts by a significant margin and reconstructs high-resolution 3D faces from a single low-resolution image.
arXiv Detail & Related papers (2021-12-11T11:36:30Z) - MoFaNeRF: Morphable Facial Neural Radiance Field [12.443638713719357]
MoFaNeRF is a parametric model that maps free-view images into a vector space coded facial shape, expression and appearance.
By introducing identity-specific modulation and encoder texture, our model synthesizes accurate photometric details.
Our model shows strong ability on multiple applications including image-based fitting, random generation, face rigging, face editing, and novel view.
arXiv Detail & Related papers (2021-12-04T11:25:28Z) - Normalized Avatar Synthesis Using StyleGAN and Perceptual Refinement [11.422683083130577]
We introduce a highly robust GAN-based framework for digitizing a normalized 3D avatar of a person from a single unconstrained photo.
While the input image can be of a smiling person or taken in extreme lighting conditions, our method can reliably produce a high-quality textured model of a person's face.
arXiv Detail & Related papers (2021-06-21T21:57:16Z) - Learning an Animatable Detailed 3D Face Model from In-The-Wild Images [50.09971525995828]
We present the first approach to jointly learn a model with animatable detail and a detailed 3D face regressor from in-the-wild images.
Our DECA model is trained to robustly produce a UV displacement map from a low-dimensional latent representation.
We introduce a novel detail-consistency loss to disentangle person-specific details and expression-dependent wrinkles.
arXiv Detail & Related papers (2020-12-07T19:30:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.