Gpt-4: A Review on Advancements and Opportunities in Natural Language
Processing
- URL: http://arxiv.org/abs/2305.03195v1
- Date: Thu, 4 May 2023 22:46:43 GMT
- Title: Gpt-4: A Review on Advancements and Opportunities in Natural Language
Processing
- Authors: Jawid Ahmad Baktash and Mursal Dawodi
- Abstract summary: Generative Pre-trained Transformer 4 (GPT-4) is the fourth-generation language model in the GPT series, developed by OpenAI.
GPT-4 has a larger model size (more than one trillion), better multilingual capabilities, improved contextual understanding, and reasoning capabilities than GPT-3.
Some of the potential applications of GPT-4 include chatbots, personal assistants, language translation, text summarization, and question-answering.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Generative Pre-trained Transformer 4 (GPT-4) is the fourth-generation
language model in the GPT series, developed by OpenAI, which promises
significant advancements in the field of natural language processing (NLP). In
this research article, we have discussed the features of GPT-4, its potential
applications, and the challenges that it might face. We have also compared
GPT-4 with its predecessor, GPT-3. GPT-4 has a larger model size (more than one
trillion), better multilingual capabilities, improved contextual understanding,
and reasoning capabilities than GPT-3. Some of the potential applications of
GPT-4 include chatbots, personal assistants, language translation, text
summarization, and question-answering. However, GPT-4 poses several challenges
and limitations such as computational requirements, data requirements, and
ethical concerns.
Related papers
- GPT-4o System Card [211.87336862081963]
GPT-4o is an autoregressive omni model that accepts as input any combination of text, audio, image, and video.
It's trained end-to-end across text, vision, and audio, meaning all inputs and outputs are processed by the same neural network.
It matches GPT-4 Turbo performance on text in English and code, with significant improvement on text in non-English languages.
arXiv Detail & Related papers (2024-10-25T17:43:01Z) - Generative AI for Enhancing Active Learning in Education: A Comparative Study of GPT-3.5 and GPT-4 in Crafting Customized Test Questions [2.0411082897313984]
This study investigates how LLMs, specifically GPT-3.5 and GPT-4, can develop tailored questions for Grade 9 math.
By utilizing an iterative method, these models adjust questions based on difficulty and content, responding to feedback from a simulated'student' model.
arXiv Detail & Related papers (2024-06-20T00:25:43Z) - An Early Evaluation of GPT-4V(ision) [40.866323649060696]
We evaluate different abilities of GPT-4V including visual understanding, language understanding, visual puzzle solving, and understanding of other modalities such as depth, thermal, video, and audio.
To estimate GPT-4V's performance, we manually construct 656 test instances and carefully evaluate the results of GPT-4V.
arXiv Detail & Related papers (2023-10-25T10:33:17Z) - Prompt Engineering or Fine Tuning: An Empirical Assessment of Large
Language Models in Automated Software Engineering Tasks [8.223311621898983]
GPT-4 with conversational prompts showed drastic improvement compared to GPT-4 with automatic prompting strategies.
fully automated prompt engineering with no human in the loop requires more study and improvement.
arXiv Detail & Related papers (2023-10-11T00:21:00Z) - DecodingTrust: A Comprehensive Assessment of Trustworthiness in GPT
Models [92.6951708781736]
This work proposes a comprehensive trustworthiness evaluation for large language models with a focus on GPT-4 and GPT-3.5.
We find that GPT models can be easily misled to generate toxic and biased outputs and leak private information.
Our work illustrates a comprehensive trustworthiness evaluation of GPT models and sheds light on the trustworthiness gaps.
arXiv Detail & Related papers (2023-06-20T17:24:23Z) - Inference-Time Policy Adapters (IPA): Tailoring Extreme-Scale LMs
without Fine-tuning [96.13057811149827]
We propose Inference-time Policy Adapters (IPA), which efficiently tailors a language model without fine-tuning it.
IPA guides a large base model during decoding time through a lightweight policy adapter trained to optimize an arbitrary user objective.
It consistently brings significant improvements over off-the-shelf language models.
arXiv Detail & Related papers (2023-05-24T11:52:55Z) - Is GPT-4 a Good Data Analyst? [67.35956981748699]
We consider GPT-4 as a data analyst to perform end-to-end data analysis with databases from a wide range of domains.
We design several task-specific evaluation metrics to systematically compare the performance between several professional human data analysts and GPT-4.
Experimental results show that GPT-4 can achieve comparable performance to humans.
arXiv Detail & Related papers (2023-05-24T11:26:59Z) - Analyzing the Performance of GPT-3.5 and GPT-4 in Grammatical Error
Correction [28.58384091374763]
GPT-3 and GPT-4 models are powerful, achieving high performance on a variety of Natural Language Processing tasks.
We perform experiments testing the capabilities of a GPT-3.5 model (text-davinci-003) and a GPT-4 model (gpt-4-0314) on major GEC benchmarks.
We report the performance of our best prompt on the BEA-2019 and JFLEG datasets, finding that the GPT models can perform well in a sentence-level revision setting.
arXiv Detail & Related papers (2023-03-25T03:08:49Z) - Sparks of Artificial General Intelligence: Early experiments with GPT-4 [66.1188263570629]
GPT-4, developed by OpenAI, was trained using an unprecedented scale of compute and data.
We demonstrate that GPT-4 can solve novel and difficult tasks that span mathematics, coding, vision, medicine, law, psychology and more.
We believe GPT-4 could reasonably be viewed as an early (yet still incomplete) version of an artificial general intelligence (AGI) system.
arXiv Detail & Related papers (2023-03-22T16:51:28Z) - GPT-4 Technical Report [116.90398195245983]
GPT-4 is a large-scale, multimodal model which can accept image and text inputs and produce text outputs.
It exhibits human-level performance on various professional and academic benchmarks, including passing a simulated bar exam with a score around the top 10% of test takers.
arXiv Detail & Related papers (2023-03-15T17:15:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.