LOGO-Former: Local-Global Spatio-Temporal Transformer for Dynamic Facial
Expression Recognition
- URL: http://arxiv.org/abs/2305.03343v1
- Date: Fri, 5 May 2023 07:53:13 GMT
- Title: LOGO-Former: Local-Global Spatio-Temporal Transformer for Dynamic Facial
Expression Recognition
- Authors: Fuyan Ma, Bin Sun and Shutao Li
- Abstract summary: Previous methods for facial expression recognition (DFER) in the wild are mainly based on Convolutional Neural Networks (CNNs), whose local operations ignore the long-range dependencies in videos.
We propose Transformer-based methods for DFER to achieve better performances but result in higher FLOPs and computational costs.
Experiments on two in-the-wild dynamic facial expression datasets (i.e., DFEW and FERV39K) indicate that our method provides an effective way to make use of the spatial and temporal dependencies for DFER.
- Score: 19.5702895176141
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Previous methods for dynamic facial expression recognition (DFER) in the wild
are mainly based on Convolutional Neural Networks (CNNs), whose local
operations ignore the long-range dependencies in videos. Transformer-based
methods for DFER can achieve better performances but result in higher FLOPs and
computational costs. To solve these problems, the local-global spatio-temporal
Transformer (LOGO-Former) is proposed to capture discriminative features within
each frame and model contextual relationships among frames while balancing the
complexity. Based on the priors that facial muscles move locally and facial
expressions gradually change, we first restrict both the space attention and
the time attention to a local window to capture local interactions among
feature tokens. Furthermore, we perform the global attention by querying a
token with features from each local window iteratively to obtain long-range
information of the whole video sequence. In addition, we propose the compact
loss regularization term to further encourage the learned features have the
minimum intra-class distance and the maximum inter-class distance. Experiments
on two in-the-wild dynamic facial expression datasets (i.e., DFEW and FERV39K)
indicate that our method provides an effective way to make use of the spatial
and temporal dependencies for DFER.
Related papers
- MSSTNet: A Multi-Scale Spatio-Temporal CNN-Transformer Network for Dynamic Facial Expression Recognition [4.512502015606517]
We propose a Multi-Scale-temporal CNN-Transformer network (MSSTNet)
Our approach takes spatial different scales extracted by CNN and feeds them into a Multi-scale Embedding Layer (MELayer)
The MELayer extracts multi-scale spatial information and encodes these features before sending them into a Transformer (T-Former)
arXiv Detail & Related papers (2024-04-12T12:30:48Z) - Betrayed by Attention: A Simple yet Effective Approach for Self-supervised Video Object Segmentation [76.68301884987348]
We propose a simple yet effective approach for self-supervised video object segmentation (VOS)
Our key insight is that the inherent structural dependencies present in DINO-pretrained Transformers can be leveraged to establish robust-temporal segmentation correspondences in videos.
Our method demonstrates state-of-the-art performance across multiple unsupervised VOS benchmarks and excels in complex real-world multi-object video segmentation tasks.
arXiv Detail & Related papers (2023-11-29T18:47:17Z) - Deeply-Coupled Convolution-Transformer with Spatial-temporal
Complementary Learning for Video-based Person Re-identification [91.56939957189505]
We propose a novel spatial-temporal complementary learning framework named Deeply-Coupled Convolution-Transformer (DCCT) for high-performance video-based person Re-ID.
Our framework could attain better performances than most state-of-the-art methods.
arXiv Detail & Related papers (2023-04-27T12:16:44Z) - Global-to-Local Modeling for Video-based 3D Human Pose and Shape
Estimation [53.04781510348416]
Video-based 3D human pose and shape estimations are evaluated by intra-frame accuracy and inter-frame smoothness.
We propose to structurally decouple the modeling of long-term and short-term correlations in an end-to-end framework, Global-to-Local Transformer (GLoT)
Our GLoT surpasses previous state-of-the-art methods with the lowest model parameters on popular benchmarks, i.e., 3DPW, MPI-INF-3DHP, and Human3.6M.
arXiv Detail & Related papers (2023-03-26T14:57:49Z) - Spatio-Temporal Transformer for Dynamic Facial Expression Recognition in
the Wild [19.5702895176141]
We propose a method for capturing discnative features within each frame model.
We utilize the CNN to translate each frame into a visual feature sequence.
Experiments indicate that our method provides an effective way to make use of the spatial and temporal dependencies.
arXiv Detail & Related papers (2022-05-10T08:47:15Z) - Video Salient Object Detection via Adaptive Local-Global Refinement [7.723369608197167]
Video salient object detection (VSOD) is an important task in many vision applications.
We propose an adaptive local-global refinement framework for VSOD.
We show that our weighting methodology can further exploit the feature correlations, thus driving the network to learn more discriminative feature representation.
arXiv Detail & Related papers (2021-04-29T14:14:11Z) - Spatial-Temporal Correlation and Topology Learning for Person
Re-Identification in Videos [78.45050529204701]
We propose a novel framework to pursue discriminative and robust representation by modeling cross-scale spatial-temporal correlation.
CTL utilizes a CNN backbone and a key-points estimator to extract semantic local features from human body.
It explores a context-reinforced topology to construct multi-scale graphs by considering both global contextual information and physical connections of human body.
arXiv Detail & Related papers (2021-04-15T14:32:12Z) - Multiple Object Tracking with Correlation Learning [16.959379957515974]
We propose to exploit the local correlation module to model the topological relationship between targets and their surrounding environment.
Specifically, we establish dense correspondences of each spatial location and its context, and explicitly constrain the correlation volumes through self-supervised learning.
Our approach demonstrates the effectiveness of correlation learning with the superior performance and obtains state-of-the-art MOTA of 76.5% and IDF1 of 73.6% on MOT17.
arXiv Detail & Related papers (2021-04-08T06:48:02Z) - Video-based Facial Expression Recognition using Graph Convolutional
Networks [57.980827038988735]
We introduce a Graph Convolutional Network (GCN) layer into a common CNN-RNN based model for video-based facial expression recognition.
We evaluate our method on three widely-used datasets, CK+, Oulu-CASIA and MMI, and also one challenging wild dataset AFEW8.0.
arXiv Detail & Related papers (2020-10-26T07:31:51Z) - Co-Saliency Spatio-Temporal Interaction Network for Person
Re-Identification in Videos [85.6430597108455]
We propose a novel Co-Saliency Spatio-Temporal Interaction Network (CSTNet) for person re-identification in videos.
It captures the common salient foreground regions among video frames and explores the spatial-temporal long-range context interdependency from such regions.
Multiple spatialtemporal interaction modules within CSTNet are proposed, which exploit the spatial and temporal long-range context interdependencies on such features and spatial-temporal information correlation.
arXiv Detail & Related papers (2020-04-10T10:23:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.