From Parse-Execute to Parse-Execute-Refine: Improving Semantic Parser
for Complex Question Answering over Knowledge Base
- URL: http://arxiv.org/abs/2305.03356v1
- Date: Fri, 5 May 2023 08:20:09 GMT
- Title: From Parse-Execute to Parse-Execute-Refine: Improving Semantic Parser
for Complex Question Answering over Knowledge Base
- Authors: Wangzhen Guo, Linyin Luo, Hanjiang Lai, Jian Yin
- Abstract summary: KoPL has been proposed to explicitly model the reasoning processes, which achieved the state-of-the-art on complex KBQA.
We show that such simple strategy can significantly improve the ability of complex reasoning.
- Score: 11.72232145568396
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Parsing questions into executable logical forms has showed impressive results
for knowledge-base question answering (KBQA). However, complex KBQA is a more
challenging task that requires to perform complex multi-step reasoning.
Recently, a new semantic parser called KoPL has been proposed to explicitly
model the reasoning processes, which achieved the state-of-the-art on complex
KBQA. In this paper, we further explore how to unlock the reasoning ability of
semantic parsers by a simple proposed parse-execute-refine paradigm. We refine
and improve the KoPL parser by demonstrating the executed intermediate
reasoning steps to the KBQA model. We show that such simple strategy can
significantly improve the ability of complex reasoning. Specifically, we
propose three components: a parsing stage, an execution stage and a refinement
stage, to enhance the ability of complex reasoning. The parser uses the KoPL to
generate the transparent logical forms. Then, the execution stage aligns and
executes the logical forms over knowledge base to obtain intermediate reasoning
processes. Finally, the intermediate step-by-step reasoning processes are
demonstrated to the KBQA model in the refinement stage. With the explicit
reasoning processes, it is much easier to answer the complex questions.
Experiments on benchmark dataset shows that the proposed PER-KBQA performs
significantly better than the stage-of-the-art baselines on the complex KBQA.
Related papers
- Interactive-KBQA: Multi-Turn Interactions for Knowledge Base Question Answering with Large Language Models [7.399563588835834]
Interactive-KBQA is a framework designed to generate logical forms through direct interaction with knowledge bases (KBs)
Our method achieves competitive results on the WebQuestionsSP, ComplexWebQuestions, KQA Pro, and MetaQA datasets.
arXiv Detail & Related papers (2024-02-23T06:32:18Z) - ChatKBQA: A Generate-then-Retrieve Framework for Knowledge Base Question Answering with Fine-tuned Large Language Models [19.85526116658481]
We introduce ChatKBQA, a novel and simple generate-then-retrieve KBQA framework.
Experimental results show that ChatKBQA achieves new state-of-the-art performance on standard KBQA datasets.
This work can also be regarded as a new paradigm for combining LLMs with knowledge graphs for interpretable and knowledge-required question answering.
arXiv Detail & Related papers (2023-10-13T09:45:14Z) - Prompting Large Language Models with Chain-of-Thought for Few-Shot
Knowledge Base Question Generation [19.327008532572645]
Question Generation over Knowledge Bases (KBQG) aims to convert a logical form into a natural language question.
We propose Chain-of-Thought prompting, which is an in-context learning strategy for reasoning.
We conduct extensive experiments over three public KBQG datasets.
arXiv Detail & Related papers (2023-10-12T15:08:14Z) - Modeling Hierarchical Reasoning Chains by Linking Discourse Units and
Key Phrases for Reading Comprehension [80.99865844249106]
We propose a holistic graph network (HGN) which deals with context at both discourse level and word level, as the basis for logical reasoning.
Specifically, node-level and type-level relations, which can be interpreted as bridges in the reasoning process, are modeled by a hierarchical interaction mechanism.
arXiv Detail & Related papers (2023-06-21T07:34:27Z) - HPE:Answering Complex Questions over Text by Hybrid Question Parsing and
Execution [92.69684305578957]
We propose a framework of question parsing and execution on textual QA.
The proposed framework can be viewed as a top-down question parsing followed by a bottom-up answer backtracking.
Our experiments on MuSiQue, 2WikiQA, HotpotQA, and NQ show that the proposed parsing and hybrid execution framework outperforms existing approaches in supervised, few-shot, and zero-shot settings.
arXiv Detail & Related papers (2023-05-12T22:37:06Z) - Successive Prompting for Decomposing Complex Questions [50.00659445976735]
Recent works leverage the capabilities of large language models (LMs) to perform complex question answering in a few-shot setting.
We introduce Successive Prompting'', where we iteratively break down a complex task into a simple task, solve it, and then repeat the process until we get the final solution.
Our best model (with successive prompting) achieves an improvement of 5% absolute F1 on a few-shot version of the DROP dataset.
arXiv Detail & Related papers (2022-12-08T06:03:38Z) - Complexity-Based Prompting for Multi-Step Reasoning [72.0057198610614]
We study the task of prompting large-scale language models to perform multi-step reasoning.
A central question is which reasoning examples make the most effective prompts.
We propose complexity-based prompting, a simple and effective example selection scheme for multi-step reasoning.
arXiv Detail & Related papers (2022-10-03T05:33:27Z) - DecAF: Joint Decoding of Answers and Logical Forms for Question
Answering over Knowledge Bases [81.19499764899359]
We propose a novel framework DecAF that jointly generates both logical forms and direct answers.
DecAF achieves new state-of-the-art accuracy on WebQSP, FreebaseQA, and GrailQA benchmarks.
arXiv Detail & Related papers (2022-09-30T19:51:52Z) - Question Answering over Knowledge Bases by Leveraging Semantic Parsing
and Neuro-Symbolic Reasoning [73.00049753292316]
We propose a semantic parsing and reasoning-based Neuro-Symbolic Question Answering(NSQA) system.
NSQA achieves state-of-the-art performance on QALD-9 and LC-QuAD 1.0.
arXiv Detail & Related papers (2020-12-03T05:17:55Z) - SPARQA: Skeleton-based Semantic Parsing for Complex Questions over
Knowledge Bases [27.343078784035693]
We propose a novel skeleton grammar to represent the high-level structure of a complex question.
This dedicated coarse-grained formalism with a BERT-based parsing algorithm helps to improve the accuracy of the downstream fine-grained semantic parsing.
Our approach shows promising performance on several datasets.
arXiv Detail & Related papers (2020-03-31T05:12:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.