AsConvSR: Fast and Lightweight Super-Resolution Network with Assembled
Convolutions
- URL: http://arxiv.org/abs/2305.03387v1
- Date: Fri, 5 May 2023 09:33:34 GMT
- Title: AsConvSR: Fast and Lightweight Super-Resolution Network with Assembled
Convolutions
- Authors: Jiaming Guo, Xueyi Zou, Yuyi Chen, Yi Liu, Jia Hao, Jianzhuang Liu,
Youliang Yan
- Abstract summary: We propose a fast and lightweight super-resolution network to achieve real-time performance.
By analyzing the applications of divide-and-conquer in super-resolution, we propose assembled convolutions which can adapt convolution kernels according to the input features.
Our method also wins the first place in NTIRE 2023 Real-Time Super-Resolution - Track 1.
- Score: 32.85522513271578
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In recent years, videos and images in 720p (HD), 1080p (FHD) and 4K (UHD)
resolution have become more popular for display devices such as TVs, mobile
phones and VR. However, these high resolution images cannot achieve the
expected visual effect due to the limitation of the internet bandwidth, and
bring a great challenge for super-resolution networks to achieve real-time
performance. Following this challenge, we explore multiple efficient network
designs, such as pixel-unshuffle, repeat upscaling, and local skip connection
removal, and propose a fast and lightweight super-resolution network.
Furthermore, by analyzing the applications of the idea of divide-and-conquer in
super-resolution, we propose assembled convolutions which can adapt convolution
kernels according to the input features. Experiments suggest that our method
outperforms all the state-of-the-art efficient super-resolution models, and
achieves optimal results in terms of runtime and quality. In addition, our
method also wins the first place in NTIRE 2023 Real-Time Super-Resolution -
Track 1 ($\times$2). The code will be available at
https://gitee.com/mindspore/models/tree/master/research/cv/AsConvSR
Related papers
- RTSR: A Real-Time Super-Resolution Model for AV1 Compressed Content [10.569678424799616]
Super-resolution (SR) is a key technique for improving the visual quality of video content.
To support real-time playback, it is important to implement fast SR models while preserving reconstruction quality.
This paper proposes a low-complexity SR method, RTSR, designed to enhance the visual quality of compressed video content.
arXiv Detail & Related papers (2024-11-20T14:36:06Z) - AIM 2024 Challenge on Efficient Video Super-Resolution for AV1 Compressed Content [56.552444900457395]
Video super-resolution (VSR) is a critical task for enhancing low-bitrate and low-resolution videos, particularly in streaming applications.
In this work, we compile different methods to address these challenges, the solutions are end-to-end real-time video super-resolution frameworks.
The proposed solutions tackle video up-scaling for two applications: 540p to 4K (x4) as a general case, and 360p to 1080p (x3) more tailored towards mobile devices.
arXiv Detail & Related papers (2024-09-25T18:12:19Z) - Hierarchical Patch Diffusion Models for High-Resolution Video Generation [50.42746357450949]
We develop deep context fusion, which propagates context information from low-scale to high-scale patches in a hierarchical manner.
We also propose adaptive computation, which allocates more network capacity and computation towards coarse image details.
The resulting model sets a new state-of-the-art FVD score of 66.32 and Inception Score of 87.68 in class-conditional video generation.
arXiv Detail & Related papers (2024-06-12T01:12:53Z) - ConvLLaVA: Hierarchical Backbones as Visual Encoder for Large Multimodal Models [77.59651787115546]
High-resolution Large Multimodal Models (LMMs) encounter the challenges of excessive visual tokens and quadratic visual complexity.
We propose ConvLLaVA, which employs ConvNeXt, a hierarchical backbone, as the visual encoder of LMM.
ConvLLaVA compresses high-resolution images into information-rich visual features, effectively preventing the generation of excessive visual tokens.
arXiv Detail & Related papers (2024-05-24T17:34:15Z) - Towards High-Quality and Efficient Video Super-Resolution via
Spatial-Temporal Data Overfitting [27.302681897961588]
Deep convolutional neural networks (DNNs) are widely used in various fields of computer vision.
We propose a novel method for high-quality and efficient video resolution upscaling tasks.
We deploy our models on an off-the-shelf mobile phone, and experimental results show that our method achieves real-time video super-resolution with high video quality.
arXiv Detail & Related papers (2023-03-15T02:40:02Z) - QuickSRNet: Plain Single-Image Super-Resolution Architecture for Faster
Inference on Mobile Platforms [36.962828335199596]
QuickSRNet is an efficient super-resolution architecture for real-time applications on mobile platforms.
Our proposed architecture produces 1080p outputs via 2x upscaling in 2.2 ms on a modern smartphone.
arXiv Detail & Related papers (2023-03-08T02:19:54Z) - Rethinking Resolution in the Context of Efficient Video Recognition [49.957690643214576]
Cross-resolution KD (ResKD) is a simple but effective method to boost recognition accuracy on low-resolution frames.
We extensively demonstrate its effectiveness over state-of-the-art architectures, i.e., 3D-CNNs and Video Transformers.
arXiv Detail & Related papers (2022-09-26T15:50:44Z) - ShuffleMixer: An Efficient ConvNet for Image Super-Resolution [88.86376017828773]
We propose ShuffleMixer, for lightweight image super-resolution that explores large convolution and channel split-shuffle operation.
Specifically, we develop a large depth-wise convolution and two projection layers based on channel splitting and shuffling as the basic component to mix features efficiently.
Experimental results demonstrate that the proposed ShuffleMixer is about 6x smaller than the state-of-the-art methods in terms of model parameters and FLOPs.
arXiv Detail & Related papers (2022-05-30T15:26:52Z) - Hybrid Pixel-Unshuffled Network for Lightweight Image Super-Resolution [64.54162195322246]
Convolutional neural network (CNN) has achieved great success on image super-resolution (SR)
Most deep CNN-based SR models take massive computations to obtain high performance.
We propose a novel Hybrid Pixel-Unshuffled Network (HPUN) by introducing an efficient and effective downsampling module into the SR task.
arXiv Detail & Related papers (2022-03-16T20:10:41Z) - SwiftSRGAN -- Rethinking Super-Resolution for Efficient and Real-time
Inference [0.0]
We present an architecture that is faster and smaller in terms of its memory footprint.
A real-time super-resolution enables streaming high resolution media content even under poor bandwidth conditions.
arXiv Detail & Related papers (2021-11-29T04:20:15Z) - Collapsible Linear Blocks for Super-Efficient Super Resolution [3.5554418329811557]
Single Image Super Resolution (SISR) has become an important computer vision problem.
We propose SESR, a new class of Super-Efficient Super Resolution networks.
Detailed experiments across six benchmark datasets demonstrate that SESR achieves similar or better image quality.
arXiv Detail & Related papers (2021-03-17T02:16:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.